




Inverter

# Bidirectional Power Supply

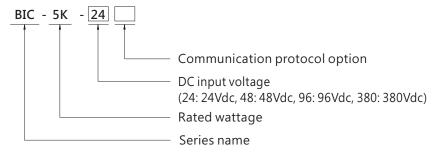
· High efficiency · Lightweight · Intelligent



The BIC-5K series is a 5KW bidirectional power supply featuring AC-DC 
conversion with energy recovery functionality. This product adopts a fully digitalized design, characterized by high efficiency, intelligence, compact size, and comprehensive safety certifications. It is commonly used in applications such as battery factory grading/forming testing equipment, home energy storage systems, kinetic energy recovery systems, and distributed grids (V2G). The BIC-5K series is a high-reliability green energy power solution that supports energy saving and carbon reduction.

# Contents

| 1.Safety Guidelines             | 1  |
|---------------------------------|----|
| 2.Introduction                  | 2  |
| 2.1 Model Encoding              | 2  |
| 2.2 Features                    | 2  |
| 2.3 Specification               | 3  |
| 2.4 Derating Curve              | 5  |
| 2.5 Mechanical Specification    | 6  |
| 3.Installation & Wiring         | 9  |
| 3.1 Precautions                 | 9  |
| 3.2 Installation Procedures     | 9  |
| 3.3 DC Cable Size Selection     | 11 |
| 4.User Interface                | 12 |
| 4.1 AC Panel                    | 12 |
| 4.2 DC Panel                    | 13 |
| 4.3 LED Indicator               | 13 |
| 4.4 Pin Assignment of CRL       | 15 |
| 4.5 Pin Assignment of           | 16 |
| COMM                            |    |
| 4.6 Pin Assignment of PAR1,PAR2 | 17 |
| 4.7 Communication               | 19 |
| Address/ID Assignment           |    |
| 5.Explanation of Operation      | 20 |
| 5.1 BIC Mode                    | 21 |
| 5.2 50549 Mode                  | 28 |
| 5.3 Charger Mode                | 50 |
| 5.4 Inrush Current Limiting     |    |
| 5.5 Power Factor Correction     | 56 |
| (PFC)                           |    |
| 5.6 Fan Speed control           | 56 |
| 5.7 Fault Signal                | 56 |
| 5.8 DC-OK Signal                | 56 |


| 5.9 Remote Control                      | 57  |
|-----------------------------------------|-----|
| 5.10 Current Sharing                    | 58  |
| 5.11 Factory Resetting                  | 60  |
| 6.Communication Protocol                | 61  |
| 6.1 CANBus Protocol                     | 61  |
| 6.2 Modbus Protocol                     | 98  |
| 6.3 Value Range and Tolerance           | 137 |
| 7.Protections and Trouble shooting      | 148 |
| 7.1 Protections                         | 148 |
| 7.2 Troubleshooting                     | 149 |
| 8.Warranty                              | 150 |
| 9.Environmental declaration information | 151 |

# 1. Safety Guidelines

- Risk of electrical shock and energy hazard, all failure should be examined by a qualified technician. Please do not remove the case from the bidirectional power supply by yourself.
- Please refrain from situating the bidirectional power supply in damp environments or in close proximity to water sources.
- Please do not install the bidirectional power supply in places with high ambient temperature or under direct sunlight.
- The AC voltage range is 180 305Vac (47 63Hz), please do not connect the bidirectional power supply to AC gird out of the range.
- Make sure the air flow from the fan is not obstructed at both sides (front and back) of the unit. (Please allow at least 15cm of space).
- Please do not stack any object on the bidirectional power supply.
- The safety protection level of this supply is class I. The "Frame Ground"(上) of the unit must be well connected to PE (Protective Earth).

### 2.Introduction

# 2.1 Model Encoding



| Туре  | Communication Protocol | Note     |
|-------|------------------------|----------|
| Blank | CANBus protocol        | In Stock |
| MOD   | MODBus protocol        | In Stock |

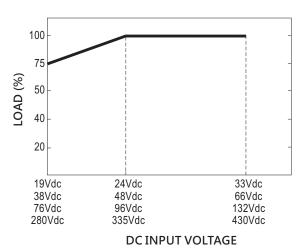
#### 2.2 Features

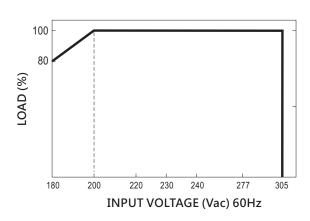
- Combining AC → DC and DC → AC bidirection power,
   5KW full-power operation in both directions
- Ultra-fast bidirectional time of 1ms(AC <del>₹</del> DC)
- Global certificates in multi-fields (ITE 62368-1, Enery converter 62477-1, AC Grid system 50549-1)
- 180~305Vac(277Vac available)
- High efficiency up to 93.5%
- THD <3% in both conversion mode
- Parallel operation up to 30KW(5+1 unit)
- $\bullet \ \, {\sf Support \, CANBus \, or \, MODBus-RTU(RS-485)} \, protocol \, communication \\$
- Complete protections: Anti-islanding protection, AC fail protection, DC OVP,OLP, OCP, OTP
- -30°C~+70°C wide operating temperature
- FAN nosie < 43~54dB
- Support 3Ø with multiple units configuration
- Conformal coating
- 5 years warranty

# 2.3 Specification

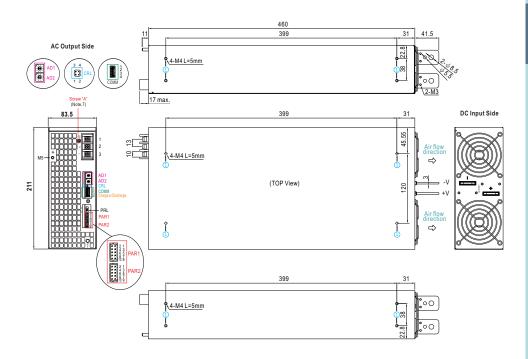
| 61                                       | DECIFIC ATIO                   | NN.                                                                                                                                                                                          | BIC-5K-24 □                            | BIC-5K-48 □                        | BIC-5K-96 □                      | BIC-5K-380 □                  |  |
|------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|----------------------------------|-------------------------------|--|
| 31                                       | SPECIFICATION                  |                                                                                                                                                                                              | □=Blank, MOD (standard model in stock) |                                    |                                  |                               |  |
|                                          | OUTPUT                         |                                                                                                                                                                                              |                                        |                                    |                                  |                               |  |
|                                          | DC VOLTAGE                     |                                                                                                                                                                                              | 24V                                    | 48V                                | 96V                              | 380V                          |  |
|                                          | RATED CURRENT                  |                                                                                                                                                                                              | 208A                                   | 104A                               | 52A                              | 15A                           |  |
|                                          | RATED POWER                    |                                                                                                                                                                                              | 4992W                                  | 4992W                              | 4992W                            | 5025W                         |  |
|                                          | FULL POWER VOI                 | TAGE RANGE                                                                                                                                                                                   | 24 ~ 33V                               | 48 ~ 66V                           | 96 ~ 112V                        | 335 ~ 430V                    |  |
|                                          | RIPPLE & NOISE (               | max.) Note.2                                                                                                                                                                                 | 350mVp-p                               | 600mVp-p                           | 900mVp-p                         | 2.8Vp-p                       |  |
|                                          | VOLTAGE RANGE                  |                                                                                                                                                                                              | 19 ~ 33V                               | 38 ~ 66V                           | 76 ~ 112V                        | 280 ~ 430V                    |  |
|                                          | CURRENT RANGE                  |                                                                                                                                                                                              | 0 ~ 208A                               | 0 ~ 104A                           | 0 ~ 52A                          | 0 ~ 15A                       |  |
| -                                        | VOLTAGE TOLERA                 | ANCE Note.3                                                                                                                                                                                  | ±2.0%                                  |                                    | •                                | •                             |  |
| AC t                                     | LINE REGULATION                |                                                                                                                                                                                              | ±1.0%                                  |                                    |                                  |                               |  |
| °D(                                      | LOAD REGULATION                |                                                                                                                                                                                              | ±1.0%                                  |                                    |                                  |                               |  |
| Di                                       | SETUP, RISE TIME               |                                                                                                                                                                                              | 8000ms, 150ms/230Vac at full lo        | nad                                |                                  |                               |  |
| to DC Direction                          | INPUT                          |                                                                                                                                                                                              | occomo, roomorzoo vac at ian i         |                                    |                                  |                               |  |
| ion                                      | AC VOLTAGE RAN                 | GE                                                                                                                                                                                           | 180 ~ 305Vac                           |                                    |                                  |                               |  |
|                                          | FREQUENCY RAN                  |                                                                                                                                                                                              | 47 ~ 63Hz                              |                                    |                                  |                               |  |
|                                          | POWER FACTOR                   |                                                                                                                                                                                              | ≥0.99/230Vac at full load              |                                    |                                  |                               |  |
|                                          |                                |                                                                                                                                                                                              | 91%                                    | 93%                                | 93%                              | 93%                           |  |
|                                          | EFFICIENCY (Typ.               |                                                                                                                                                                                              | 27A/230Vac                             | 93%                                | 93%                              | 93%                           |  |
|                                          | AC CURRENT (Typ                | •                                                                                                                                                                                            |                                        |                                    |                                  |                               |  |
|                                          | INRUSH CURREN                  |                                                                                                                                                                                              | 120A/230Vac                            |                                    |                                  |                               |  |
|                                          | LEAKAGE CURRE                  |                                                                                                                                                                                              | 7.07mA/305Vac                          |                                    |                                  |                               |  |
|                                          | TOTAL HARMONIC                 | DISTORTION                                                                                                                                                                                   | <3%(@load=100%/230Vac)                 |                                    |                                  |                               |  |
|                                          | INPUT                          | <u> </u>                                                                                                                                                                                     |                                        | 1                                  | T                                | I                             |  |
|                                          | INPUT POWER (M                 |                                                                                                                                                                                              | 5665W                                  | 5550W                              | 5550W                            | 5500W                         |  |
|                                          | FULL POWER VOLT                |                                                                                                                                                                                              | 24 ~ 33V                               | 48 ~ 66V                           | 96 ~ 112V                        | 335 ~ 430V                    |  |
| Þ                                        | DC VOLTAGE RAN                 | ·                                                                                                                                                                                            | 19 ~ 33V                               | 38 ~ 66V                           | 76 ~ 112V                        | 280 ~ 430V                    |  |
| 8                                        | MAX. INPUT CURF                | RENT                                                                                                                                                                                         | 232A                                   | 114A                               | 57A                              | 16A                           |  |
| DC to AC Direction                       | OUTPUT                         |                                                                                                                                                                                              |                                        |                                    |                                  |                               |  |
| Dire                                     | RATED OUTPUT P                 | OWER (Typ.)                                                                                                                                                                                  | 5000W                                  |                                    |                                  |                               |  |
| ctic                                     | VOLTAGE RANGE                  |                                                                                                                                                                                              | 180 ~ 305Vac determined by A0          | C main (277Vac available)          |                                  |                               |  |
| š                                        | FREQUENCY RAN                  | GE                                                                                                                                                                                           | 47 ~ 63Hz determined by AC ma          | ain                                |                                  |                               |  |
|                                          | AC CURRENT (Typ                | ).)                                                                                                                                                                                          | 22.5A/230Vac                           |                                    |                                  |                               |  |
|                                          | POWER FACTOR (                 | Typ.)                                                                                                                                                                                        | 0.99/230Vac at full load               |                                    |                                  |                               |  |
|                                          | EFFICIENCY (Typ.               | Note.4                                                                                                                                                                                       | 91%                                    | 93.5%                              | 93%                              | 93.5%                         |  |
|                                          | TOTAL HARMONIC                 | DISTORTION                                                                                                                                                                                   | <3%(@load=100%/230Vac)                 |                                    |                                  |                               |  |
| PR                                       | DTECTION                       |                                                                                                                                                                                              |                                        |                                    |                                  |                               |  |
|                                          |                                |                                                                                                                                                                                              | 105 ~ 115% rated output power          |                                    |                                  |                               |  |
| ovi                                      | R LOAD                         |                                                                                                                                                                                              | AC to DC Constant current lim          | iting, shut down DC O/P voltage s  | sec. after DC O/P voltage is dow | n low, re-power on to recover |  |
|                                          |                                |                                                                                                                                                                                              | DC to AC Not accurable with o          |                                    |                                  |                               |  |
| SHO                                      | ORT CIRCUIT                    |                                                                                                                                                                                              | Shut down O/P current, re-power        | er on to recover                   |                                  |                               |  |
|                                          |                                |                                                                                                                                                                                              | 34 ~ 35V                               | 68 ~ 70V                           | 115 ~ 121V                       | 435 ~ 450V                    |  |
| OVI                                      | R VOLTAGE                      |                                                                                                                                                                                              |                                        |                                    | 1                                | 1                             |  |
| OVER TEMPERATURE                         |                                | Protection type : Shut down O/P voltage, re-power on to recover  Shut down O/P voltage, recovers automatically after temperature goes down                                                   |                                        |                                    |                                  |                               |  |
| ISLANDING PROTECTION                     |                                | Shut down AC O/P voltage, re-                                                                                                                                                                |                                        | , good down                        |                                  |                               |  |
| _                                        |                                |                                                                                                                                                                                              | onat down Ao off voitage, re-          | pomor on to recover                |                                  |                               |  |
| FUNCTION  RIDIDECTION SWITCH TIME (Typ.) |                                | 1ms                                                                                                                                                                                          | 1ms                                    | 3ms                                | 1ms                              |                               |  |
| -                                        | BIDIRECTION SWITCH TIME (Typ.) |                                                                                                                                                                                              |                                        |                                    | UIIII                            | Linia                         |  |
| PARALLEL                                 |                                | Up to 30KW(5+1) units, Please refer to the Function Manual                                                                                                                                   |                                        |                                    |                                  |                               |  |
| CANBUS or MODBUS                         |                                | Communication provides function such as control, setting and monitoring  By electrical signal or dry contact Short: Power ON Open: Power OFF Please refer to the Function Manual infollowing |                                        |                                    |                                  |                               |  |
| REI                                      | MOTE ON-OFF CONT               |                                                                                                                                                                                              | , , ,                                  | <u> </u>                           |                                  | Function Manual infollowing   |  |
| EAR                                      | SPEED CONTROL                  | Note.6                                                                                                                                                                                       |                                        | ntrol detect by PSU's internal tem |                                  | I                             |  |
|                                          | (vn )                          |                                                                                                                                                                                              | 54dB                                   | 43dB                               | 43dB                             | 43dB                          |  |
| /                                        | 70% load with Ta=25°C          | 54dB                                                                                                                                                                                         | 44dB                                   | 44dB                               | 44dB                             |                               |  |

3


| ENVIRONMENT                 |                                                                      |                                                 |                                                                           |  |
|-----------------------------|----------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|--|
| WORKING TEMP.               | -30 ~ +70°C (Refer to "Derating Curve                                | -30 ~ +70 °C (Refer to "Derating Curve")        |                                                                           |  |
| WORKING HUMIDITY            | 20 ~ 90% RH non-condensing                                           | 20 ~ 90% RH non-condensing                      |                                                                           |  |
| STORAGE TEMP., HUMIDITY     | -40 ~ +85°C, 10 ~ 95% RH non-conde                                   | ensing                                          |                                                                           |  |
| TEMP. COEFFICIENT           | ±0.03%/°C (0~40°C)                                                   |                                                 |                                                                           |  |
| VIBRATION                   | 10 ~ 500Hz, 3G 10min./1cycle, 60min                                  | . each along X, Y, Z axes                       |                                                                           |  |
| SAFETY & EMC                |                                                                      |                                                 |                                                                           |  |
| SAFETY STANDARDS            | CB IEC62368-1/IEC62477-1, IEC505<br>BS EN/EN50549-1, EAC TP TC 004 a | 49-1, UL62368-1, CAN/CSA C22.2 No.62<br>pproved | 2368-1,TUV BS EN/EN62368-1,                                               |  |
| WITHSTAND VOLTAGE Note.7    | I/P-O/P:4.24KVdc I/P-FG:2.12KVd                                      | c O/P-FG:0.7Vdc                                 |                                                                           |  |
| ISOLATION RESISTANCE Note.7 | I/P-O/P, I/P-FG, O/P-FG:100M Ohms                                    | / 500Vdc / 25°C/ 70% RH                         |                                                                           |  |
|                             | BS EN/EN55032                                                        |                                                 |                                                                           |  |
|                             | Parameter                                                            | Standard                                        | Test Level / Note                                                         |  |
| FMO FMIDOLON                | Conducted                                                            | BS EN/EN55032 (CISPR32)                         | Class A                                                                   |  |
| EMC EMISSION                | Radiated                                                             | BS EN/EN55032 (CISPR32)                         | Class A                                                                   |  |
|                             | Harmonic Current                                                     | BS EN/EN61000-3-12                              | Class A                                                                   |  |
|                             | Voltage Flicker                                                      | BS EN/EN61000-3-3                               |                                                                           |  |
|                             | BS EN/EN55035, BS EN/EN61000-6-2                                     |                                                 |                                                                           |  |
|                             | Parameter                                                            | Standard                                        | Test Level / Note                                                         |  |
|                             | ESD                                                                  | BS EN/EN61000-4-2                               | Level 3, 8KV air ; Level 2, 4KV contact                                   |  |
|                             | Radiated                                                             | BS EN/EN61000-4-3                               | Level 3                                                                   |  |
| EMC IMMUNITY                | EFT / Burst                                                          | BS EN/EN61000-4-4                               | Level 3                                                                   |  |
|                             | Surge                                                                | BS EN/EN61000-6-2                               | 2KV/Line-Line 4KV/Line-Earth                                              |  |
|                             | Conducted                                                            | BS EN/EN61000-4-6                               | Level 3                                                                   |  |
|                             | Magnetic Field                                                       | BS EN/EN61000-4-8                               | Level 4                                                                   |  |
|                             | Voltage Dips and Interruptions                                       | BS EN/EN61000-4-11                              | >95% dip 0.5 periods, 30% dip 25 period<br>>95% interruptions 250 periods |  |
| OTHERS                      |                                                                      |                                                 |                                                                           |  |
| MTBF                        | 209.4K hrs min. Telcordia SR-332                                     | (Bellcore); 17.8K hrs min. MIL-HDB              | K-217F (25°C)                                                             |  |
| DIMENSION                   | 460*211*83.5mm (L*W*H)                                               |                                                 |                                                                           |  |
| PACKING                     | 12Kg; 1pcs/ 12Kg/ 1.25CUFT                                           | 12Kg; 1pcs/ 12Kg/ 1.25CUFT                      |                                                                           |  |
| NOTE                        |                                                                      |                                                 |                                                                           |  |
|                             |                                                                      |                                                 |                                                                           |  |

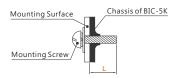

- 1. All parameters NOT specially mentioned are measured at 230VAC input, rated load and 25°C of ambient temperature.
  2. Ripple & noise are measured at 20MHz of bandwidth by using a 12" twisted pair-wire terminated with a 0.1uf & 47uf parallel capacitor.
  3. Tolerance: includes set up tolerance, line regulation and load regulation.
  4. Efficiency is tested 75°S load, linear load at 230Vac input voltage and 24V/48V/96V/380Vdc output voltage
  5. The power supply is considered as an independent unit, but the final equipment still need to re-confirm that the whole system complies with the EMC directives.
  6. FAN noise test set up according to ISO-7779.
  7. During withstand voltage and isolation resistance testing, the screw "A" shall be temporarily removed, and shall be installed back after the testing.

  \*\*\*Product Liability Disclaimer: For detailed information, please refer to https://www.meanwell.com/serviceDisclaimer.aspx


# 2.4 Derating curve



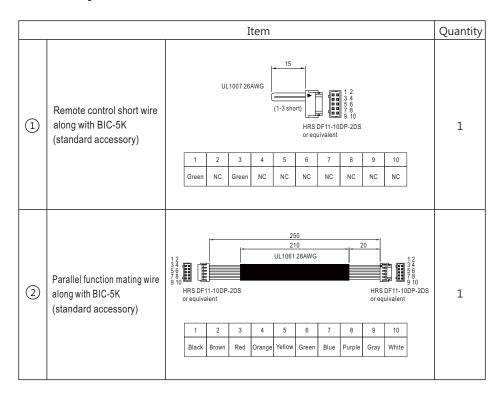




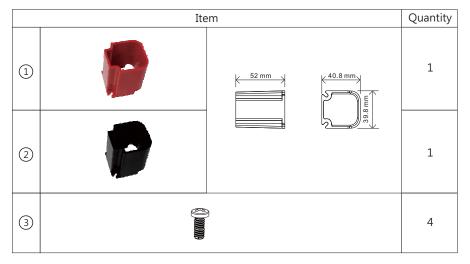

# 2.5 Mechanical specification

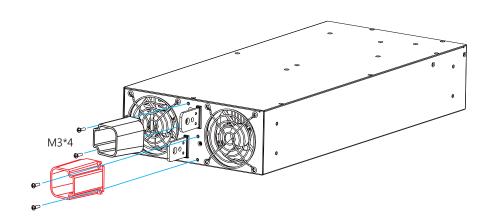


**X** Mounting Instruction


| Hole No. | Recommended Screw Size | MAX. Penetration Depth L | Recommended mounting torque |
|----------|------------------------|--------------------------|-----------------------------|
| 1        | M4                     | 5mm                      | 7~10Kgf-cm                  |




### ※ Terminal Pin No. Assignment


| Pin No. | Assignment | Terminal | Maximum mounting torque |
|---------|------------|----------|-------------------------|
| 1       | FG         | 4.0.0    |                         |
| 2       | AC-N       | 1 2 3    | 18Kgf-cm                |
| 3       | AC/L       |          |                         |

# **Accessory List**



# ※ Terminal protector mating along with BIC-5K (Option)





8

# 3.Installation & Wiring

#### 3.1 Precautions

- The unit should be mounted on a flat surface or holding rack with suitable strength.
- In order to ensure the lifespan of the unit, you should refrain from operating the unit in environments with high dust or moisture.
- BIC-5K is designed with built-in DC fans. Please make sure that the ventilation is not blocked. We recommend that there should be no barriers within 15cm of the ventilation slits, as shown below.

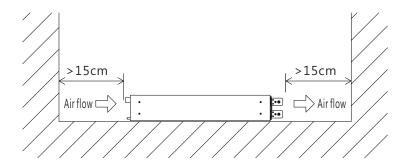
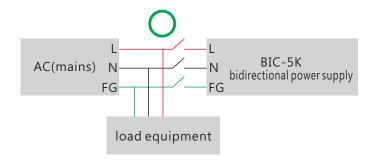
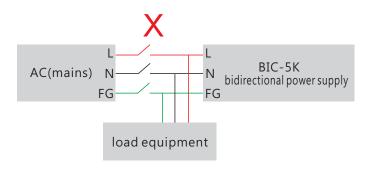
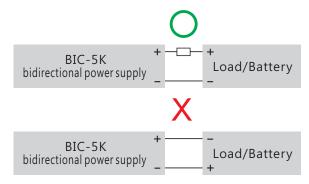





Figure 3-1 Arrangement suggestion

# 3.2 Installation Procedures

AC End
 To avoid AC voltage surges, it is recommended that the BIC-5K and
 the load equipment do not share the same circuit breaker.






NOTE: The bidirectional power supply is single-phase input/output.

Please pay attention to the wiring when connecting the supply to a three-phase system.

#### • DC End

- Choose the right and suitable cable size for connection between the BIC-5K and the loads or batteries. Please refer to 3.3 DC Cable Size Selection.
- ② Connect the DC positive polarity of the supply to the positive of the loads/batteries and connect the DC negative polarity of the supply to the negative of the loads/batteries. Make sure there is no reverse polarity or short-circuit on the connection.



NOTE: To enhance system safety, it is recommended to install a circuit breaker or a fuse on the battery's positive terminal.

#### 3.3 DC Cable Size Selection

Wire connections should be as short as possible and less than 1 meter is highly recommended. Make sure that suitable wires are chosen based on safety requirement and rating of current. Small cross section will result in lower efficiency, less output power and the wires may also become overheated and cause danger. For selection, please refer to table 3-1.

Table 3-1 Wire recommendations

| AWG  | Cross-section Are(mm) | Maximum<br>DC current (A) |
|------|-----------------------|---------------------------|
| 8    | 6                     | 40A                       |
| 6    | 10                    | 60A                       |
| 4    | 16                    | 80A                       |
| 2    | 25                    | 100A                      |
| 1    | 35                    | 125A                      |
| 0    | 50                    | 160A                      |
| 000  | 75                    | 190A                      |
| 0000 | 95                    | 230A                      |

### 4. User Interface

#### 4.1 AC Panel

#### (A) AC terminals:

M4 screws are used; Recommended cable size: 10 AWG; Recommended torque: 18kgf-cm.

#### (B) AD1,AD2:

Serve as the device address setting for communication purposes. Please refer to Section 4.7 for details.

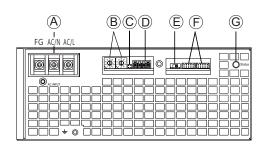
#### C CRL:

Termination resistor, used to stabilize the Modbus / CAN bus communication and eliminate signals reflection.

#### (D) COMM:

The Modbus-RTU / CAN bus communication port.

#### (E) PRL:


Used to stable signals for multiple BIC-5K units connected in parallel.

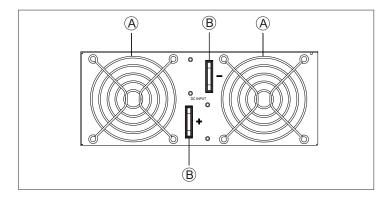
#### (F) PAR1, PAR2:

For the usage of remote on/off and parallel functions, please refer to Section 4.6.

#### **©** LED indicator:

Indicate the current operational status of the bidirectional power supply.




### 4.2 DC Panel

A Ventilation slits:

To ensure proper operation and preserve the lifespan of the power supply, please ensure suitable ventilation is provided.

B DC terminals (+),(-):

M8 screws are used; Please refer to Section 3.3 for cable suggestion.



### 4.3 LED Indicator

The LED indicator is controlled by the microcontroller or the MCU. The MCU will change color of the indicator according to its operation status. The indicator lights in constant green when the supply is in AC/DC mode; The indicator's flashing in green when the supply is in DC/AC mode; The indicator turns red when the supply is in abnormal conditions or protection mode.

#### BIC Mode:

| LED                     | Description                                                                   |  |
|-------------------------|-------------------------------------------------------------------------------|--|
| <ul><li>Green</li></ul> | AC to DC Direction, functions as regular power supply                         |  |
| Green                   | DC to AC Direction, functions as grid inverter                                |  |
| ● Red                   | Abnormal status (Over temperature protection, Overload protection, Fan fail.) |  |
| Orange                  | Standby during starup                                                         |  |

Light

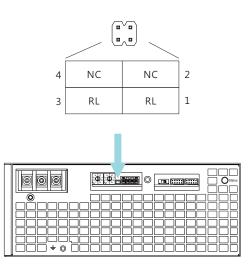
+ Flash

### 50549 Mode and Charger Mode

| LED                     | Description                                                                   |  |
|-------------------------|-------------------------------------------------------------------------------|--|
| <ul><li>Green</li></ul> | 50549 Mode : Negative power ;<br>Charger Mode : Float or Battery full         |  |
| Green                   | DC to AC Direction, functions as grid inverter                                |  |
| ● Red                   | Abnormal status (Over temperature protection, Overload protection, Fan fail.) |  |
| Orange                  | Standby during startup                                                        |  |
|                         | Charger mode: Charging                                                        |  |

Light

- Flash

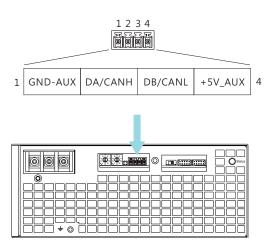

### Protection signal

| Output of alarm     | Description                                   |
|---------------------|-----------------------------------------------|
| <b>╬</b> Red: Blink | High Ambient temperature alarm*               |
| Red: 1 Blink/Pause  | Overload(OLP)                                 |
| Red: 2 Blink/Pause  | Over voltage(OVP)                             |
| Red: 3 Blink/Pause  | Over temperature / Under temperature(OTP/UTP) |
| Red: 4 Blink/Pause  | Fan fail                                      |
| Red: 5 Blink/Pause  | Others*                                       |

Note: 1. The high ambient temperature alarm is for notification purposes only and will not shut down the output.

2. Others include protection status SCP \ AC UVP and EEPROM error.

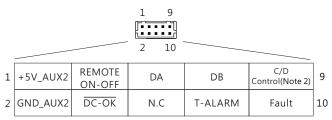
# 4.4 Pin Assignment of CRL

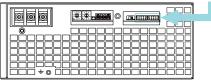



# Connect Pin No. Assignment:

| Pin No. | Function | Description                                                                                                                                                   |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,3     | RL       | Pin 1 and Pin 3 are used to connect the built-in termination resistor onto the communication bus by short-circuiting these two pins or installing the jumper. |
| 2,4     | NC       | Pin 2 and Pin 4 are used to place the jumper when the unit is not the terminations.                                                                           |

Note: The CRL acts as a termination resistor that is used to eliminate signal reflection and improve signal stability.


# 4.5 Pin Assignment of COMM




 $Connect\,Pin\,No.\,Assignment\,\colon\,EC381V-04P\,or\,equivalent$ 

| Pin No.   | Function | Description                                                      |
|-----------|----------|------------------------------------------------------------------|
| 1         | GND-AUX  | Auxiliary voltage output GND.                                    |
| 2 D+/CANH |          | For MODBus model: Data line used in MODBus interface.(Note)      |
|           |          | For CANBus model: Data line used in CANBus interface.(Note)      |
| 3 D-/CANL |          | For MODBus model: Data line used in MODBus interface.(Note)      |
|           |          | For CANBus model: Data line used in CANBus interface.(Note)      |
| 4         | +5V_AUX  | Auxiliary voltage output, 4.5~5.5V, referenced to GND-AUX (pin1) |

# 4.6 Pin Assignment of PAR1,PAR2





Connect Pin No. Assignment: HRS DF11-10DP-2DS or equivalent

| Pin No. | Function         | Description                                                                                                                                                                                                                                                                        |
|---------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | +5V_AUX2         | Auxiliary voltage output, 4.5 ~ 5.5 V, referenced to GND_AUX2 (pin2). (Only for REMOTE ON-OFF)                                                                                                                                                                                     |
| 2       | GND_AUX2         | Auxiliary voltage output GND_AUX2 (pin2).                                                                                                                                                                                                                                          |
| 3       | REMOTE<br>ON-OFF | The unit can turn the output ON/OFF by dry contact between Remote ON/OFF and +5_AUX2.(Note 1) SHORT: Power ON; OPEN: Power OFF                                                                                                                                                     |
| 4       | DC-OK            | High $(4.5 \sim 5.5 \text{V})$ : When the Vout $\leq 80\% \pm 5\%$ .<br>Low $(-0.5 \sim 0.5 \text{V})$ : When Vout $\geq 80\% \pm 5\%$ .<br>The maximum sourcing current is 4mA and only for output. (Note.1)                                                                      |
| 5       | DA               | Data line used for parallel control.                                                                                                                                                                                                                                               |
| 6       | N.C              | Blank                                                                                                                                                                                                                                                                              |
| 7       | DB               | Data line used for parallel control.                                                                                                                                                                                                                                               |
| 8       | T-ALARM          | High (4.5 ~ 5.5V): When the internal temperature exceeds the limit of temperature alarm, or when any of the fans fails.  Low (-0.5 ~ 0.5V): When the internal temperature is normal, and when fans work normally.  The maximum sourcing current is 4mA and only for output(Note.1) |

| Pin No. | Function               | Description                                                                                                                                                                                                                                            |
|---------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9       | C/D<br>Control(Note 2) | High (4.5 ~ 5.5V): Battery Charging mode (Note 2)<br>Low (0 ~ 0.5V): Battery Discharging mode (Note 2)                                                                                                                                                 |
| 10      | Fault                  | High (4.5 ~ 5.5V): When the Vac ≤ 165Vrms, OLP, SCP, OTP, OVP, AC Fail, fan lock, islanding protection.  Low (-0.5 ~ 0.5V): When Vac ≥ 175Vrms and when power supply work normally.  The maximum sourcing current is 4mA and only for output. (Note.1) |

Note 1: Isotated signal, referenced to GND\_AUX2.

Note 2: Only for bettery mode use.

### 4.7 Communication Address/ID Assignment

Each BIC-5K unit should have their unique and own device address to communicate over the bus. AD1 and AD2 allow users to designate an address/ID for the Modbus/CAN bus (with maximum of 64 addresses). Please refer to the table below for detailed settings.



|            | Switch position                      |     |  |
|------------|--------------------------------------|-----|--|
| Address/ID | AD1                                  | AD2 |  |
| 0          | 0                                    | 0   |  |
| 1          | 0                                    | 1   |  |
| 2          | 0                                    | 2   |  |
| 3          | 0                                    | 3   |  |
| 4          | 0                                    | 4   |  |
| 5          | 0                                    | 5   |  |
| 6          | 0                                    | 6   |  |
| 7          | 0                                    | 7   |  |
| 8          | 0                                    | 8   |  |
| 9          | 0                                    | 9   |  |
| 10         | 1                                    | 0   |  |
| 11         | 1                                    | 1   |  |
| 12         | 1                                    | 2   |  |
| 13         | 1                                    | 3   |  |
| 14         | 1                                    | 4   |  |
| 15         | 1                                    | 5   |  |
| 16         | 1                                    | 6   |  |
| 17         | 1                                    | 7   |  |
| 18         | 1                                    | 8   |  |
| 19         | 1                                    | 9   |  |
| 20         | 2                                    | 0   |  |
| 21         | 2                                    | 1   |  |
| 22         | 2                                    | 2   |  |
| 23         | 2                                    | 3   |  |
| 24         | 2                                    | 4   |  |
| 25         | 2                                    | 5   |  |
| 26         | 2                                    | 6   |  |
| 27         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 7   |  |
| 28         | 2                                    | 8   |  |
| 29         | 2                                    | 9   |  |
| 30         | 3                                    | 0   |  |
| 31         | 3                                    | 1   |  |

|            | Switch | osition |
|------------|--------|---------|
| Address/ID | AD1    | AD2     |
| 32         | 3      | 2       |
| 33         | 3      | 3       |
| 34         | 3      | 4       |
| 35         | 3      | 5       |
| 36         | 3      | 6       |
| 37         | 3      | 7       |
| 38         | 3      | 8       |
| 39         | 3      | 9       |
| 40         | 4      | 0       |
| 41         | 4      | 1       |
| 42         | 4      | 2       |
| 43         | 4      | 3       |
| 44         | 4      | 4       |
| 45         | 4      | 5       |
| 46         | 4      | 6       |
| 47         | 4      | 7       |
| 48         | 4      | 8       |
| 49         | 4      | 9       |
| 50         | 5      | 0       |
| 51         | 5      | 1       |
| 52         | 5      | 2       |
| 53         | 5      | 3       |
| 54         | 5      | 4       |
| 55         | 5      | 5       |
| 56         | 5      | 6       |
| 57         | 5      | 7       |
| 58         | 5      | 8       |
| 59         | 5      | 9       |
| 60         | 6      | 0       |
| 61         | 6      | 1       |
| 62         | 6      | 2       |
| 63         | 6      | 3       |

# 5. Explanation of Operation

The BIC-5K has three main operation modes: BIC Mode, 50549 Mode, and Charger Mode.

- (1) BIC Mode: This is the bidirectional power supply mode, supporting both Bi-directional Auto-detect Mode and Bi-directional Battery Mode.
- (2) 50549 Mode: This mode is designed specifically to comply with EN 50549-1, the European standard that specifies the technical requirements for the connection of generating plants. All parameters can be adjusted through the communication interfaces according to the requirements of local power stations.
- (3) Charger Mode: Supports 2-stage or 3-stage charging profiles and customizable charging curves, such as constant current (CC), constant voltage (CV), etc.

These main operation modes can be configured via INV\_OPERATION(0x0100) command.

| Mode         | CHG_EN<br>(Low byte: bit 2) | GRID_EN<br>(Low byte: bit 3) | CHG_FIRST<br>(Low byte: bit 4) |
|--------------|-----------------------------|------------------------------|--------------------------------|
| BIC Mode     | 0                           | 0                            | Don't care                     |
| Charger Mode | 1                           | 0                            | Don't care                     |
| 50549 Mode   | 0                           | 1                            | Don't care                     |
| 50549 Mode   | 1                           | 1                            | 0                              |
| Charger Mode | 1                           | 1                            | 1                              |

When the BIC-5K operates in 50549 Mode + Charger Mode, it will automatically switch to Charger Mode and charging the battery whenever a low battery voltage is detected.

The CHG\_FIRST setting defines how the device behaves on startup :

- CHG\_FIRST = 1: The BIC-5K charges the battery to full capacity first, then switches to 50549 Mode for grid connection.
- CHG\_FIRST = 0: The BIC-5K starts directly in 50549 Mode and only switches to Charger Mode automatically if the battery voltage drops too low.

If the device is set in 50549 Mode only (without combing with Charger Mode), the BIC-5K will not charge the battery automatically, even when the battery voltage is low.

#### 5.1 BIC Mode

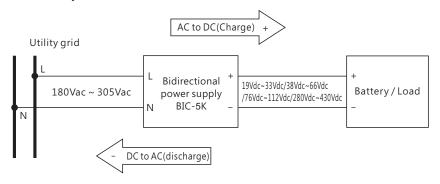
The device is in BIC Mode when both low byte bit2 (CHG\_EN) and low byte bit3 (GRID\_END) are "logic low" in INV\_OPERATION(0x0100) command. BIC-5K possesses AC to DC and DC to AC two way conversion functions. The conversion direction can be automatically detected and controlled by BIC-5K's internal firmware or manually switched by users according to different application requirements. Before entering detailed function explanation. Please refer to following definitions.

AC to DC (Energy absorbing and charging/ power supplying):

The BIC-5K converts AC energy from the grid into DC energy for the battery or the loads. The operation principle is the same as an ordinary power supply or a charger.



DC to AC (Energy recycling and discharging):


Opposite to the AC to DC conversion, the BIC-5K converts DC energy from the battery or loads into AC energy, then feeding back to the grid. AC output synchronization range is 180Vac~305Vac/47Hz~63Hz, the bidirectional power supply can work normally as long as the AC gird is within the range.



NOTE: The BIC-5K has a built-in program that detects the AC voltage range for different regions. For example, in a 230 Vac system, if the AC voltage rises to 277 Vac, the device will trigger AC OVP and shut down. It will resume normal operation once the AC voltage returns to the normal range.

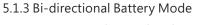
#### 5.1.1 Description of Bidirectional Operation

The output range of the BIC-5K covers DC: 19V - 430V; AC: 180 - 305Vac / 47-63Hz, which can be used to applications with various voltage requirements, such as battery test equipment. To cope with different application occasions, there are two modes for selection, bi-directional auto-detect mode and bi-directional battery mode.



#### 5.1.2 Bi-directional Auto-detect Mode

This is the default factory setting in BIC Mode, AC to DC or DC to AC conversion is controlled by BIC-5K automatically according to operation mechanism below.


- "Target voltage" is the DC voltage setting of the bidirectional supply, when the DC end voltage is different from the "target voltage", the internal firmware will switch between two conversion functions of AC to DC or DC to AC. "Target voltage" is adjustable by the communication interfaces.
- When the "target voltage" is higher than the battery voltage or application equipment voltage, the BIC-5K operates in AC to DC conversion.
- When the "target voltage" is lower than the battery voltage or application equipment voltage, the BIC-5K operates in DC to AC conversion.

NOTE: During this mode, AC to DC or DC to AC conversion is judged by the internal firmware. Active control signal (e.g. C/D control) will not take effect in this mode.

| Condition             | Conversion |
|-----------------------|------------|
| $V_{Target} > V_{DC}$ | AC to DC   |
| $V_{Target} < V_{DC}$ | DC to AC   |



After Bi-directional Battery Mode is activated, users can switch the device between AC to DC or DC to AC conversion by DIR\_CTRL command (digital) or C/D control (analogy). Please refer to 5.1.3.1 command (digital) and 5.1.3.2 C/D control (analogy)



To activate the mode, please follow instructions below:

- 1. Set command SYSTEM\_CONFIG (CAN:0x00C2; MOD:0x00C4) at 0x0003→Activate CAN bus/Modbus communication mode.
- 2. Set command BIDIR\_CONFIG (0x0143) at 0x0001→Set at Bidirectional Battery Mode.
- 3. Repower on the supply to activate the battery mode. NOTE: For detailed information on the communication

interfaces, please refer to 6. Protocol

Vbat Charge CC+CV CC recycle
Ibat -Ibat

C/D Time

Logic control curve

The supported commands are in the table:

| Command<br>Code | Command Name | Description                      | Default                                                 |
|-----------------|--------------|----------------------------------|---------------------------------------------------------|
| 0x0020          | VOUT_SET     | Charge voltage setting           | 24V: 25.2V<br>48V: 50.4V<br>96V: 96V<br>380V: 400V      |
| 0x0030          | IOUT_SET     | Charge current setting           | 24V: 228.8A<br>48V: 114.4A<br>96V: 57.2A<br>380V: 16.5A |
| 0x0140          | DIR_CTRL     | A/D or D/A<br>conversion control | 00h(A/D)                                                |

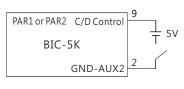
#### The supported commands are in the table:

| Command<br>Code | Command Name | Description               | Default                                                 |
|-----------------|--------------|---------------------------|---------------------------------------------------------|
| 0x0020          | VOUT_SET     | DC voltage setting        | 24V: 24V<br>48V: 48V<br>96V:96V<br>380V:380V            |
| 0x0030          | IOUT_SET     | Charge current setting    | 24V: 228.8A<br>48V: 114.4A<br>96V: 57.2A<br>380V: 16.5A |
| 0x0142          | IOUT_SET_REV | Discharge current setting | 24V: -232A<br>48V: -114A<br>96V: -57A<br>380V: -16A     |

| μ | 4 |  |
|---|---|--|
| à | • |  |
| ч | " |  |
| - | - |  |

| Command<br>Code | Command Name | Description                      | Default                                             |
|-----------------|--------------|----------------------------------|-----------------------------------------------------|
| 0x0141          | VOUT_SET_REV | Discharge voltage<br>setting     | 24V: 19V<br>48V: 38V<br>96V: 76V<br>380V: 280V      |
| 0x0142          | IOUT_SET_REV | Discharge current setting        | 24V: -232A<br>48V: -114A<br>96V: -57A<br>380V: -16A |
| 0x0143          | BIDIR_CONFIG | Bidirectional mode configuration | 00h(auto-detect)                                    |

#### 5.1.3.1 DIR CTRL Command (digital)


The users can set the supply in AC to DC (charging) or DC to AC (discharging) conversion directly through command DIR\_CTRL (0x0140). Command VOUT\_SET (0x0020) and IOUT\_SET (0x0030) are used to adjust values of charge voltage and charge current in AC to DC conversion. Command VOUT\_SET\_REV (0x0141) and IOUT\_SET\_REV (0x0142) are used to adjust values of discharging voltage and discharging current in DC to AC conversion.

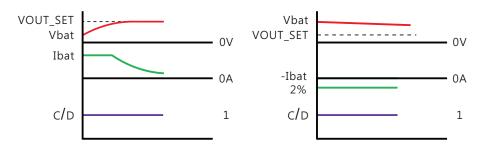
| Command        | Conversion            |
|----------------|-----------------------|
| DIR_CTRL = 00h | AC to DC(charging)    |
| DIR_CTRL = 01h | DC to AC(discharging) |

#### 5.1.3.2 C/D Control (analogy)

The users also can control AC to DC (charging) or DC to AC (discharging) conversion via analogy signals. To activate the mode, please follow the steps below:

- 1. Set command BIDIR\_CONFIG(0x0143) at "1"  $\rightarrow$  Activate battery mode.
- 2. Set desired target voltage through VOUT\_SET(0x0020)/ VOUT\_SET\_REV(0x0141) and AC/DC and DC/AC current through IOUT\_SET(0x0030)/IOUT\_SET\_REV(0x0142). AC/DC parameters: VOUT\_SET(0x0020)/ IOUT\_SET(0x0030) DC/AC parameters: VOUT\_SET\_REV(0x0141)/IOUT\_SET\_REV(0x0142)



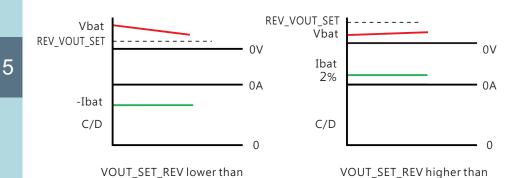

| C/D control to<br>GND-AUX | Conversion               |
|---------------------------|--------------------------|
| C/D control = 4.5 – 5.5V  | AC to DC<br>(charging)   |
| C/D control = -0.5 – 0.5V | DC to AC<br>(dischargin) |

NOTE: Pleas make sure CAN\_CTRL(Bit 0) of SYSTEM\_CONFIG (CAN:0x00C2; MOD:0x00C4) is set at "0" in order not to interfere in C/D control.

#### 5.1.3.3 Notes on Bi-directional Battery Mode

In Bi-directional Battery Mode, although users can determine direction of the conversions on their demand, however if the setting voltage does not match the actual DC end voltage, AC to DC (charging) or DC to AC (discharging) conversion may not work as expected. Here are examples that will cause conversion errors.

- 1.During AC to DC conversion (C/D control = High or DIR\_CTRL = 00h), if battery voltage is higher than the value of command VOUT\_SET (charge voltage), the BIC-5K will perform DC to AC conversion instead, but limiting discharge current at 2% of rated current. If you want to ensure AC to DC conversion working properly, please make sure value of command VOUT\_ SET is higher than the battery voltage.
- 2.During DC to AC conversion (C/D control =Low or DIR\_CTRL = 01h), if battery voltage is lower than the value of command VOUT\_SET\_REV, the BIC-5K will perform AC to DC conversion instead, but then limiting charge current at 2% of rated current. To ensure DC to AC conversion working properly, please make sure value of command VOUT\_SET\_REV is lower than the battery voltage.




VOUT SET higher than Vbat and C/D=1

Vbat and C/D=0

 $VOUT\_SET$  lower than Vbat and C/D=1

Vbat and C/D=0



#### 5.2 50549 Mode

The device is in 50549 Mode when low byte bit3 (GRID\_END) are "logic high" in INV\_OPERATION(0x0100) command.

NOTE: In this mode, most parameters are determined by grid requirements.

Any configuration or modification must be approved by the local

DSO or the grid company before making any adjustments.

#### 5.2.1 Active Power Control

Active power can be adjusted through the command of POUT\_USER\_CMD (0x0150). Additioanly, the command supports users to set the device at +/- Pn, where:

- POUT\_USER\_CMD > 0: discharges power from the battery to the grid.
- POUT\_USER\_CMD < 0: charges the battery from the grid.
   To use this function, the device must first be unlocked by the SETTING\_UNLOCK (0x00CF) command. For detailed unlocking procedures, please refer to section 6.1.4.3 for CAN bus or section 6.2.6.2 for Modbus.

NOTE: The maximum value of POUT\_USER\_CMD is limited by P\_SET (0x02EC).

#### 5.2.2 Safety Stanadard Selection

Users can set safety standard according to different countries and grid tied stanndards via the COUNTRY\_SET(0x02E5) command. There are 12 standards for selection.

| COUNTRY_SET (0x02E5) | Standard                                                                             | Country/Region |
|----------------------|--------------------------------------------------------------------------------------|----------------|
| 0                    | EN50549-1                                                                            | 50549 default  |
| 1                    | VDE-AR-N 4105                                                                        | Germany        |
| 2                    | NEN-EN 50549-1                                                                       | Netherlands    |
| 3                    | C10/11, edition 2.3                                                                  | Belgium        |
| 4                    | CEI 0-21:2022-03                                                                     | Italy          |
| 5                    | RD 647:2020<br>NTS Version 2.1                                                       | Spain          |
| 6                    | G98/2:2025-03<br>G99/2:2025-03                                                       | UK             |
| 7                    | NF EN 50549-1                                                                        | France         |
| 8                    | TEKNISK FORSKRIFT 3.3.1 –<br>REVISION 6 – KRAV TIL<br>ENERGILAGERANL/-EG:<br>2025-03 | Denmark(DK1)   |

| COUNTRY_SET (0x02E5) | Standard                                                                             | Country/Region           |
|----------------------|--------------------------------------------------------------------------------------|--------------------------|
| 9                    | TEKNISK FORSKRIFT 3.3.1 –<br>REVISION 6 – KRAV TIL<br>ENERGILAGERANL/-EG:<br>2025-03 | Denmark(DK2)             |
| 10                   | RENBLAD 342: Version: 2.0 (06.2020)<br>(Base on NEK EN 50549-1)                      | Norway                   |
| 11                   | EIFS 2018:2<br>(Refer ALP form Appendix 1)                                           | Sweden                   |
| 12                   | VJV 2018<br>(Base on SFS-EN 50549-1:2019)                                            | Finland                  |
| 13                   | CNS 15382                                                                            | Taiwan<br>(no supported) |

NOTE: At present, only EN 50549-1 certification has been obtained. For other standards, please contact your MEAN WELL distributor or MEAN WELL representative for assistance.

#### 5.2.3 Grid Connection and Disconnection

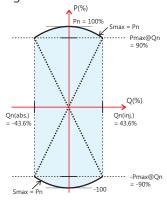
When the device starts up, it verifies the grid connection parameters to ensure that the grid voltage is within the specified limits. The startup process then follows the defined observation time and ramp-up rate in the table below for grid connection.

Reconnection: The device reconnects to the grid after a disconnection caused by an abnormal grid voltage or a remote on/off event is resolved.

Disconnection: Grid reconnection is inhibited when the device enters any self-protection conditions, including low battery voltage or over-temperature protection.

| Command<br>Code | Command Name       | Description   | Default |
|-----------------|--------------------|---------------|---------|
| 0x02D2          | CONNECT_UPPER_VOLT | Upper voltage | 50.1Hz  |
| 0x02D3          | CONNECT_LOWER_VOLT | Lower voltage | 47.5Hz  |

| Command<br>Code | Command Name       | Description                    | Default |
|-----------------|--------------------|--------------------------------|---------|
| 0x02D4          | CONNECT_UPPER_FREQ | Upper frequency                | 85%Un   |
| 0x02D5          | CONNECT_LOWER_FREQ | Lower frequency                | 110%Un  |
| 0x02D6          | CONNECT_DLY_TIME   | Observation time               | 60s     |
| 0x02D7          | CONNECT_P_RATE     | The ramp-rate for conneciton   | Disable |
| 0x02D8          | RECONNECT_P_RATE   | The ramp-rate for reconneciton | 10%/min |


NOTE:1. In 50549 Mode, ensure that Remote Control is set to ON and the GRID\_TIE\_REMOTE (0x02D1) command is enabled to allow grid connection.

2. The default configuration for 50549 Mode is 230 V / 50 Hz. If the input voltage or frequency goes beyond the specified range in the table above, the unit will enter an AC fail state. For operation at other voltage or frequency levels, adjust the range settings accordingly.

#### 5.2.4 Active and Reactive Power Setting Range

The BIC-5K allows configuration of reactive power. With a rated apparent power of 5000 VA, it can achieve a power factor (PF) of 0.9, either leading or lagging. When PF = 1, the available active power ( $P_n$ ) is 5000 W.

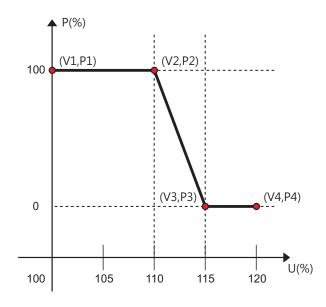
When PF = 0.9, the maximum active power is  $5000 \times 0.9 = 4500$  W, and the corresponding reactive power is  $\pm 5000 \times \sqrt{1 - 0.9^2} = \pm 2180$ VAr The device also supports bidirectional power control, with a four-quadrant operating range as illustrated below.



#### 5.2.4.1 Active Power Setting

Users can configure the active power–related parameters through the following communication commands.

| Command<br>Code | Command Name | Description                         | Default         |
|-----------------|--------------|-------------------------------------|-----------------|
| 0x02E8          | CTRL_MODE    | Control mode                        | PU_EN = disable |
| 0x02E9          | P_SET_RATE   | The ramp-rate for active power      | 30%/min         |
| 0x02EA          | P_TAU        | The time constant<br>For P(U)       | τ= 3sec         |
| 0x02EC          | P_SET        | Maximum active power output setting | 100%Pn          |
| 0x03A0          | P_V_CURVE_P1 | P1 on the P(U) Curve                | 100%Pn          |
| 0x03A1          | P_V_CURVE_V1 | V <sub>1</sub> on the P(U) Curve    | 100%Un          |
| 0x03A2          | P_V_CURVE_P2 | P <sub>2</sub> on the P(U) Curve    | 100%Pn          |
| 0x03A3          | P_V_CURVE_V2 | V <sub>2</sub> on the P(U) Curve    | 110%Un          |
| 0x03A4          | P_V_CURVE_P3 | P <sub>3</sub> on the P(U) Curve    | 0%Pn            |
| 0x03A5          | P_V_CURVE_V3 | V₃ on the P(U) Curve                | 115%Un          |
| 0x03A6          | P_V_CURVE_P4 | P4 on the P(U) Curve                | 0%Pn            |
| 0x03A7          | P_V_CURVE_V4 | V4 on the P(U) Curve                | 120%Un          |


 $<sup>\</sup>times$  The P\_SET ratio is based on W\_MAX\_RTG (0x029D) as 100%.

#### $CTRL_MODE.PU_EN = 0 (P(U) disabled):$

The output power to the grid is limited by P\_SET (0x02EC). If P\_SET is configured below the device's maximum feed-in power, the output follows P\_SET, and the ramp rate is determined by  $P_SET_RATE$  (0x02E9).

#### CTRL\_MODE.PU\_EN = 1 (P(U) enabled):

The device adjusts grid-connected power based on both P\_SET (0x02EC) and grid voltage droop. P(U) limits follow the curve defined by V1,P1  $\sim$  V4,P4. When P(U) is the main reference for grid-connected power (i.e., lower than the device's feed-in power and P\_SET, the output changes according to P\_TAU (0x02EA). For example, with  $\tau$  = 3 s, the output reaches about 90% of the target in 9 seconds.



 $P_TAU$  (0x02EA) is used as the time constant for adjusting the output. When the power command  $Pcmd^*$  is determined from the P(U) curve, the output power is ramped using a first-order function as follows:

 $Pref^{*}(k) = Pcmd^{*}(k) x (1-a) + Pref^{*}(k-1) x a$ 

X P(U) Settings: Voltages must satisfy V4 > V3 > V2 > V1

#### 5.2.4.2 Reactive Power Setting

Reactive power control can be configured through the Q\_CTRL\_MODE bits in the CTRL\_MODE (0x02E8) command, which provides five selectable modes:

- (1)Q Setpoint Mode
- (2)Q(U) Mode
- (3) Q(P) Mode
- (4) Cos(φ) Setpoint Mode (default)
- (5)  $Cos(\phi)(P)$  Mode

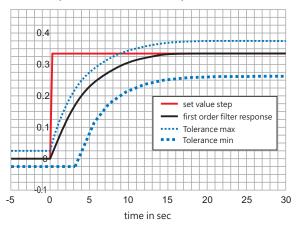
The dynamic response of all the above modes is determined by Q\_TAU, which functions the same way as P\_TAU.

#### • Q Setpoint Mode:

| Command<br>Code | Command Name | Description                                  | Default                     |
|-----------------|--------------|----------------------------------------------|-----------------------------|
| 0x02E8          | CTRL_MODE    | Control mode                                 | Q_Ctrl_mode =<br>Q_setpoint |
| 0x02EB          | Q_TAU        | The time constant for reactive power setting | τ= 3sec                     |
| 0x02ED          | Q_SET        | Maximum reactive power output setting        | %Qn                         |

In Q Setpoint Mode, reactive power is controlled by Q\_SET (0x02ED), with the response rate determined by Q\_TAU (0x02EB). For instance, if Q\_TAU = 3 s, the output achieves about 90% of the target reactive power in approximately 9 seconds.

#### • Q(U) Mode:


| Command<br>Code | Command Name | Description                                   | Default                |
|-----------------|--------------|-----------------------------------------------|------------------------|
| 0x02E8          | CTRL_MODE    | Control mode                                  | Q_Ctrl_mode =<br>Q_(U) |
| 0x02EB          | Q_TAU        | The time constant for reactive power setting  | τ=3sec                 |
| 0x035D          | Q_V_MIN_COS  | Minimum power factor limitation for Q(U) mode | PF=0                   |
| 0x035E          | Q_V_LOCKIN_P | Lock in power for Q(U) mode                   | 20%Pn                  |

| Command<br>Code | Command Name  | Description                      | Default |
|-----------------|---------------|----------------------------------|---------|
| 0x035F          | Q_V_LOCKOUT_P | Lock in power for Q(U) mode      | 5%Pn    |
| 0x0360          | Q_V_CURVE_Q1  | Q1 on the Q(U) Curve             | 100%Qn  |
| 0x0361          | Q_V_CURVE_V1  | V <sub>1</sub> on the Q(U) Curve | 93%Un   |
| 0x0362          | Q_V_CURVE_Q2  | Q <sub>2</sub> on the Q(U) Curve | 0%Qn    |
| 0x0363          | Q_V_CURVE_V2  | V <sub>2</sub> on the Q(U) Curve | 94%Un   |
| 0x0364          | Q_V_CURVE_Q3  | Q <sub>3</sub> on the Q(U) Curve | 0%Qn    |
| 0x0365          | Q_V_CURVE_V3  | V <sub>3</sub> on the Q(U) Curve | 106%Un  |
| 0x0366          | Q_V_CURVE_Q4  | Q4 on the Q(U) Curve             | -100%Qn |
| 0x0367          | Q_V_CURVE_V4  | V4 on the Q(U) Curve             | 108%Un  |

W VAR\_MAX\_INJ\_RTG and VAR\_MAX\_ABS\_RTG (0x02A3-0x02A4) serve as the 100% reference levels.

 $\times$  Q(U) settings: voltage values must satisfy V4 > V3 > V2 > V1.

The Q(U) curve defines how reactive power varies with grid voltage, using registers V1, Q1  $\sim$  V4, Q4 (0x0360 $\sim$ 0x0367). The device determines the Qcmd based on the measured grid voltage. The ramprate follows Q\_TAU(0x02EB). For example, when Q\_TAU = 3 seconds, the device reaches approximately 90% of the target reactive power within 9 seconds (three time constants).



$$Q < \sqrt{\frac{P_{\text{SET}}^2 \left( 1 - cosMin^2 \right)}{cosMin^2}} \cdot \text{ensuring that } \frac{P_{\text{SET}}^2}{\sqrt{P_{\text{SET}}^2 + Q_{\text{SET}}^2}} > \text{CosMin setting}$$

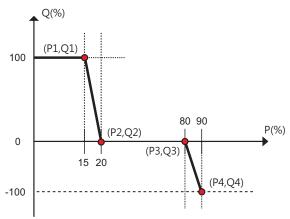
#### P Lock-in / Lock-out Setting:

- When active power P > P Lock-in, the Q(U) mode is activated.
- When active power P < P Lock-out, the Q(U) mode is deactivated.

#### • Q(P) Mode:

| Command<br>Code | Command Name | Description                                  | Default               |
|-----------------|--------------|----------------------------------------------|-----------------------|
| 0x02E8          | CTRL_MODE    | Control mode                                 | Q_Ctrl_mode =<br>Q(P) |
| 0x02EB          | Q_TAU        | The time constant for reactive power setting | τ=3sec                |
| 0x02EF          | QLOCKIN_V    | Lock in voltage for Q(P) mode                | disable               |
| 0x02F0          | QLOCKOUT_V   | lock out voltage for Q(P) mode               | disable               |
| 0x0327          | Q_P_CURVE_Q1 | Q1 on the Q(P) Curve                         | 100%Qn                |

35


| Command<br>Code | Command Name | Description                      | Default |
|-----------------|--------------|----------------------------------|---------|
| 0x0328          | Q_P_CURVE_P1 | P <sub>1</sub> on the Q(P) Curve | 15%Pn   |
| 0x0329          | Q_P_CURVE_Q2 | Q <sub>2</sub> on the Q(P) Curve | 0%Qn    |
| 0x032A          | Q_P_CURVE_P2 | P <sub>2</sub> on the Q(P) Curve | 20%Pn   |
| 0x032B          | Q_P_CURVE_Q3 | Q₃ on the Q(P) Curve             | 0%Qn    |
| 0x032C          | Q_P_CURVE_P3 | P <sub>3</sub> on the Q(P) Curve | 80%Pn   |
| 0x032D          | Q_P_CURVE_Q4 | Q4 on the Q(P) Curve             | -100%Qn |
| 0x032E          | Q_P_CURVE_P4 | P4 on the Q(P) Curve             | 90%Pn   |

X VAR\_MAX\_INJ\_RTG and VAR\_MAX\_ABS\_RTG (0x02A3-0x02A4) serve as the 100% reference levels.

5

 $\times$  Q(P) settings: voltage values must satisfy P4 > P3 > P2 > P1.

The Q(P) curve defines how reactive power varies with active power, using registers P1, Q1  $\sim$  P4, Q4 (0x0327 $\sim$ 0x032E). The device determines the Qcmd based on the grid-connected active power. The ramp-rate follows Q\_TAU(0x02EB). For example, when Q\_TAU = 3 seconds, the device reaches approximately 90% of the target reactive power within 9 seconds (three time constants).



#### V Lock-in / Lock-out Setting:

- When voltage V > V Lock-in, the Q(P) mode is activated.
- ullet When voltage V < V Lock-out, the Q(P) mode is deactivated.

# • Cosφ Setpoint Mode:

| Command<br>Code | Command Name | Description                                  | Default                    |
|-----------------|--------------|----------------------------------------------|----------------------------|
| 0x02E8          | CTRL_MODE    | Control mode                                 | Q_Ctrl_mode = cosφsetpoint |
| 0x02EB          | Q_TAU        | The time constant for reactive power setting | τ=3sec                     |
| 0x02EE          | PF_SET       | cosφ set point                               | PF = 1                     |

In Cos $\phi$  Setpoint Mode, the reactive power is determined by PF\_SET (0x02EE). The ramp-rate follows Q\_TAU (0x02EB). For example, with TAU = 3 s, the output reaches approximately 90% of the target reactive power in about 9 s (3× time constant).

The magnitude of reactive power is determined by both PF\_SET and P\_SET (0x02EC).

The conversion formula for PF SET is:

Q > 0 (lagging): PF\_SET = 100 - PFx100

 $Q < 0 \text{ (leading): } PF\_SET = -(100 - PFx100)$ 

Example:

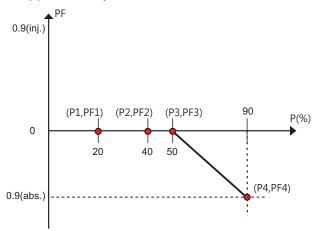
If  $P\_SET = 4500 \text{ W}$  and  $PF = \text{leading } 0.9 \text{ (PF\_SET = -10)}$ , then:

Apparent power = 5000 VA (4500 / 0.9)

Reactive power =  $-2180 \text{ VAr} (-5000 \times \sqrt{(1-0.9^2)})$ 

NOTE: If P\_SET exceeds the maximum apparent power rating (5000VA), the output will be automatically derated.

For example, if  $P\_SET = 5000 \text{ W}$  and  $PF\_SET = -10$ , the actual active power will only be 4500 W.

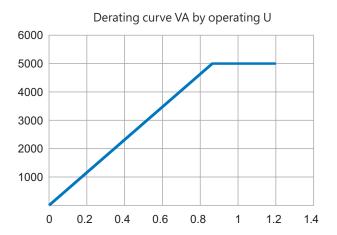

#### • Cosφ(P) Setpoint Mode:

| Command<br>Code | Command Name | Description                                  | Default               |
|-----------------|--------------|----------------------------------------------|-----------------------|
| 0x02E8          | CTRL_MODE    | Control mode                                 | Q_Ctrl_mode = cosφ(P) |
| 0x02EB          | Q_TAU        | The time constant for reactive power setting | τ=3sec                |
| 0x02EF          | QLOCKIN_V    | Lock in voltage for cosφ(P) mode             | disable               |
| 0x02F0          | QLOCKOUT_V   | lock out voltage for cosφ(P) mode            | disable               |

| Command<br>Code | Command Name   | Description                          | Default        |
|-----------------|----------------|--------------------------------------|----------------|
| 0x02F1          | PF_P_CURVE_PF1 | PF <sub>1</sub> on the cosφ(P) Curve | PF=1           |
| 0x02F2          | PF_P_CURVE_P1  | P1 on the cosφ(P) Curve              | 20%Pn          |
| 0x02F3          | PF_P_CURVE_PF2 | PF <sub>2</sub> on the cosφ(P) Curve | PF=1           |
| 0x02F4          | PF_P_CURVE_P2  | P <sub>2</sub> on the cosφ(P) Curve  | 40%Pn          |
| 0x02F5          | PF_P_CURVE_PF3 | PF <sub>3</sub> on the cosφ(P) Curve | PF=1           |
| 0x02F6          | PF_P_CURVE_P3  | P <sub>3</sub> on the cosφ(P) Curve  | 50%Pn          |
| 0x02F7          | PF_P_CURVE_PF4 | PF4 on the cosφ(P) Curve             | PF = 0.9(abs.) |
| 0x02F8          | PF_P_CURVE_P4  | P4 on the cosφ(P) Curve              | 100%Pn         |

 $Cos\phi(P)$  settings: voltage values must satisfy P4 > P3 > P2 > P1.

The  $\cos \varphi$  (P) curve defines how reactive power varies with active power, using registers P1, PF1 ~ P4, PF4 (0x02F1~0x02F8). The device determines the Qcmd based on the grid-connected active power. The ramp-rate follows Q\_TAU(0x02EB). For example, when Q\_TAU = 3 seconds, the device reaches 90% of the target reactive power within approximately 9 seconds (three time constants).




### V Lock-in / Lock-out Setting:

- $\bullet$  When voltage V > V Lock-in, the  $cos\phi(P)$  mode is activated.
- When voltage V < V Lock-out, the  $cos\phi(P)$  mode is deactivated.

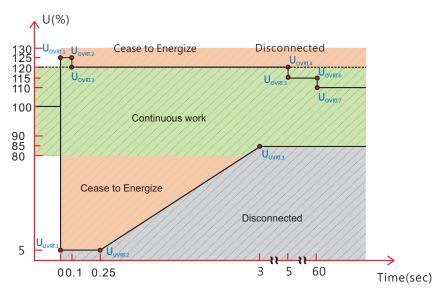
#### 5.2.5 Apparent Power Derating Control

When the grid voltage drops below 85% of Un, the device will limit the output power accordingly. Above this threshold, the device can operate at full rated power (Smax = 5000 VA).



NOTE: To prevent battery being overcharged, if the actual charging voltage exceeds the value set in CURVE\_FV (0x00B2), the device will automatically reduce the charging power, down to a minimum of 0%, ensuring that the battery is not overcharged.

5.2.6 Over-voltage/Under-voltage Ride Through Control (OVRT & UVRT)


The fault-ride-through (FRT) function operates according to the curve shown below. It ensures that the device can withstand abnormal grid voltage conditions and quickly restore power

period.

(1) Cease-to-Energize Region: When the grid voltage enters the unloading region (below 80% or above 110% of nominal), I\_cmd is forced to 0 A. Output ramps: 20% of Iac (rated) within 60 ms, and 10% of Iac(rated) within 100 ms.

output when the grid returns to the normal range within a short

- (2) Disconnected Region: When the grid voltage enters the disconnection zone, the relay trips and PWM output is stopped.
- (3) Continuous Work Region: When the grid voltage recovers to the continuous operation range, power output is quickly restored to over 90% of the pre-fault power within 1 second (Tan\_90% < 1 s).



# The ride-through commands are as follows:

| Command<br>Code | Command Name      | Description                      | Default                        |
|-----------------|-------------------|----------------------------------|--------------------------------|
| 0x02E4          | SAFTY_FUNC_CONFIG | Safty function configuration     | UVRT = enable<br>OVRT = enable |
| 0x03D9          | UVRT_VOLT1        | V <sub>1</sub> on the UVRT Curve | 5%Un                           |
| 0x03DA          | UVRT_TIME1        | T <sub>1</sub> on the UVRT Curve | 0sec                           |
| 0x03DB          | UVRT_VOLT2        | V <sub>2</sub> on the UVRT Curve | 5%Un                           |
| 0x03DC          | UVRT_TIME2        | T <sub>2</sub> on the UVRT Curve | 0.25sec                        |
| 0x03DD          | UVRT_VOLT3        | V <sub>3</sub> on the UVRT Curve | 85%Un                          |
| 0x03DE          | UVRT_TIME3        | T <sub>3</sub> on the UVRT Curve | 3sec                           |
| 0x03DF          | UVRT_VOLT4        | V4 on the UVRT Curve             | 85%Un                          |
| 0x03E0          | UVRT_TIME4        | T4 on the UVRT Curve             | 3sec                           |
| 0x03E1          | UVRT_VOLT5        | V <sub>5</sub> on the UVRT Curve | 85%Un                          |
| 0x03E2          | UVRT_TIME5        | Ts on the UVRT Curve             | 3sec                           |
| 0x03E3          | UVRT_VOLT6        | V <sub>6</sub> on the UVRT Curve | 85%Un                          |
| 0x03E4          | UVRT_TIME6        | T <sub>6</sub> on the UVRT Curve | 3sec                           |
| 0x03E5          | UVRT_VOLT7        | V7 on the UVRT Curve             | 85%Un                          |
| 0x03E6          | UVRT_TIME7        | T7 on the UVRT Curve             | 3sec                           |
| 0x0468          | OVRT_VOLT1        | V <sub>1</sub> on the OVRT Curve | 125%Un                         |
| 0x0469          | OVRT_TIME1        | T <sub>1</sub> on the OVRT Curve | 0sec                           |
| 0x046A          | OVRT_VOLT2        | V <sub>2</sub> on the OVRT Curve | 125%Un                         |
| 0x046B          | OVRT_TIME2        | T <sub>2</sub> on the OVRT Curve | 0.1sec                         |
| 0x046C          | OVRT_VOLT3        | V <sub>3</sub> on the OVRT Curve | 120%Un                         |
| 0x046D          | OVRT_TIME3        | T <sub>3</sub> on the OVRT Curve | 0.1sec                         |

| Command<br>Code | Command Name | Description                      | Default |
|-----------------|--------------|----------------------------------|---------|
| 0x046E          | OVRT_VOLT4   | V <sub>4</sub> on the OVRT Curve | 120%Un  |
| 0x046F          | OVRT_TIME4   | T4 on the OVRT Curve             | 5sec    |
| 0x0470          | OVRT_VOLT5   | V <sub>5</sub> on the OVRT Curve | 115%Un  |
| 0x0471          | OVRT_TIME5   | Ts on the OVRT Curve             | 5sec    |
| 0x0472          | OVRT_VOLT6   | V <sub>6</sub> on the OVRT Curve | 115%Un  |
| 0x0473          | OVRT_TIME6   | T <sub>6</sub> on the OVRT Curve | 60sec   |
| 0x0474          | OVRT_VOLT7   | V7 on the OVRT Curve             | 110%Un  |
| 0x0475          | OVRT_TIME7   | T <sub>7</sub> on the OVRT Curve | 60sec   |

 $<sup>\</sup>times$  OVRT/UVRT settings: T3 < T4 < T5 < T6 < T7. If only 5 points are used, set (V6, T6) and (V7, T7) to be the same as the last valid point.

#### 5.2.7 LFSM Control

The LFSM control is divilded into LFSM-O (power response to overfrqency) and LFSM-U (power response to underfrqency).

#### LFSM-O:

| Command<br>Code | Command Name      | Description                  | Default           |
|-----------------|-------------------|------------------------------|-------------------|
| 0x02E4          | SAFTY_FUNC_CONFIG | Safty function configuration | LFSMO = enable    |
| 0x0609          | LFSMO_FREQ_START  | Start frqency of LFSM-O      | 50.2Hz            |
| 0x060A          | LFSMO_FREQ_STOP   | Stop frqency of LFSM-O       | 50.2 Hz (disable) |
| 0x060B          | LFSMO_STOP_DLY    | Stop deay of LFSM-O          | 30sec             |
| 0x060C          | LFSMO_DROOP_RATE  | Droop rate of LFSM-O         | 5%                |
| 0x060D          | LFSMO_ACTIVE_DLY  | Activation delay of LFSM-O   | 0sec              |

There are two operation modes for LFSM-O, Power Follows Frequency and Power Return NOT Follows Frequency. The mode selection depends on the relationship between LFSMO\_FREQ\_START (0x0609) and LFSMO\_FREQ\_STOP (0x060A).

Power Follows Frequency:

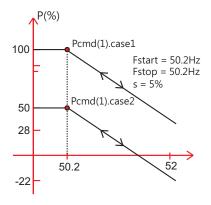
 $LFSMO\_FREQ\_STOP \ge LFSMO\_FREQ\_START$ .

Power Return NOT Follows Frequency:

LFSMO\_FREQ\_STOP < LFSMO\_FREQ\_START.

If frequency rises to 52 Hz, LFSM-O is disabled.

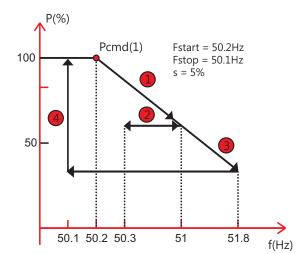
#### **Power Follows Frequency**


When the frequency exceeds Fstart (LFSMO\_FREQ\_START (0x0609)), the device reduces power from the current command Pcmd(1), so the total output is: Pcmd = Pcmd(1) -  $\triangle$  P (power reduction)

 $\triangle$  P/f slope is determined by the LFSMO\_DROOP\_RATE (0x060C) command or the s value.

The relationship between  $\triangle$  P and s:

$$\triangle P = \frac{1_{\text{SET}}}{s} \cdot \frac{f_{\text{start}} - f_{ac}}{f_{ac}} \cdot P_{\text{ref}} \cdot 2\% \le s \le 12\%$$


For energy storage systems (ESS), Pref uses the maximum output power Pn as the reference.



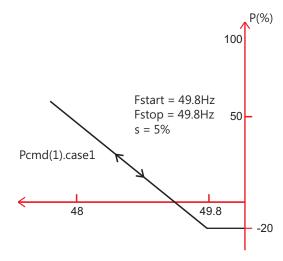
#### Power Return NOT Follows Frequency:

When this mode is chosen,  $\triangle$  P holds its previously reduced power level even the frequency is decreased.  $\triangle$  P only returns to its maximum power setting (or P\_SET (0x02EC)) when the frequency is equal to or lower than the value of LFSMO\_FREQ\_STOP. Additionally, LFSMO\_STOP\_DLY (0x060B) can be used to set a delay time before  $\triangle$  P is restored once the frequency criterion is met.

The below curve give a visualization of how the mode behaves. LFSM-O is activated when AC frequency exceeds LFSMO\_FREQ\_START (50.2Hz). From Pcmd(1) to 51 Hz(1), the power reduction follows the droop rate defined by LFSMO\_DROOP\_RATE (0x060C). When the frequency decreases to 50.3 Hz (2), the output power stays at the level corresponding to 51 Hz rather than increasing along the curve. If the frequency rises above 51 Hz up to 51.8 Hz (3), the output power is further reduced to a new level. It is only when the frequency returns to LFSMO\_FREQ\_STOP (50.1 Hz) and remains there for the duration specified by LFSMO\_STOP\_DLY, LFSM-O is deactivated and △P returns to 100%.



When exiting LFSM-O and returning to normal operation, the output power will be restored from Pcmd(1)  $+\triangle$  P back to P\_SET(0x02EC). During this process, the power ramp-up (soft change) follows the RECONNECT\_P\_RATE (0x02D8) command.


#### • LFSM-U:

The mechanism is similar to LFSM-O. When the grid frequency drops to Fstart, this function is activated, increasing the current output power Pcmd(1) by adding a frequency compensation  $\triangle$  P to support the grid.

 $Pcmd = Pcmd(1) - \triangle P$ 

The ride-through commands are as follows:

| Command<br>Code | Command Name      | Description                  | Default           |
|-----------------|-------------------|------------------------------|-------------------|
| 0x02E4          | SAFTY_FUNC_CONFIG | Safty function configuration | LFSMU = enable    |
| 0x060E          | LFSMU_FREQ_START  | Start frqency of LFSM-U      | 49.8Hz            |
| 0x060F          | LFSMU_FREQ_STOP   | Stop frqency of LFSM-U       | 49.8 Hz (disable) |
| 0x0610          | LFSMU_STOP_DLY    | Stop deay of LFSM-U          | 30sec             |
| 0x0611          | LFSMU_DROOP_RATE  | Droop rate of LFSM-U         | 5%                |
| 0x0612          | LFSMU_ACTIVE_DLY  | Activation delay of LFSM-U   | 0sec              |



#### 5.2.8 LFSM Pref Setting

The LFSM\_P\_REF (0x0613) command is used to set Pref.

The ride-through commands are as follows:

| Command<br>Code | Command Name | Description       | Default   |
|-----------------|--------------|-------------------|-----------|
| 0x0613          | LFSM_P_REF   | LFSM Pref setting | PREF = Pn |

5

In most energy storage system (ESS) applications, Pref is set to 0, meaning Pref = Pn (rated power). If LFSM\_P\_REF is set to 1, then Pref is calculated dynamically according to: Pref = PM, where PM = Pmax (maximum target output power) - Pnow (current operating power). Example 1 - LFSM-U:

If the device is charging at 2500 W before activation, and the maximum discharging power is 5000 W, then PM = 5000 - (-2500) = 7500 W. Example 2 - LFSM-O:

If the device is charging at 2500 W before activation, and the maximum charging power is 5000 W, then PM = 5000 - 2500 = 2500 W.

## 5.2.9 ROCOF(Rate-of-change-of-frequency) Protection

ROCOF is a passive anti-islanding detection function. The device monitors the average frequency change rate within the time window defined by the ROCOF\_WINDOW\_TIME (0x065A) command. If the detected rate of change exceeds the threshold set by ROCOF\_SLOPE (0x0659), the device will trigger NS-Protection, disconnecting the AC relay and disabling output.

#### The ride-through commands are as follows:

| Command<br>Code | Command Name      | Description                  | Default         |
|-----------------|-------------------|------------------------------|-----------------|
| 0x02E4          | SAFTY_FUNC_CONFIG | Safty function configuration | ROCOF = disable |
| 0x0659          | ROCOF_SLOPE       | Slope setting of ROCOF       | 2.5Hz/sec       |
| 0x065A          | ROCOF_WINDOW_TIME | Window time of ROCOF         | 500ms           |

#### 5.2.10 Switch Protection (NS Protect) (According to Regulations)

The device includes a grid disconnection protection function. It continuously monitors the grid voltage and frequency at the AC connection point through internal sensors, with measurement accuracies of  $\pm 1\%$ Un for voltage and  $\pm 0.05$  Hz for frequency.

Protection is categorized into four conditions: OV (Overvoltage), UV (Undervoltage), OF (Overfrequency), and UF (Underfrequency). Each condition includes multiple protection levels and corresponding trip times. First-level protection typically represents slow protection with multi-cycle response. Second-level and higher protections provide fast protection with response times ≤ 2 cycles.

#### The ride-through commands are as follows:

| Command<br>Code | Command Name | Description                             | Default<br>(0x02E5 = 0) |
|-----------------|--------------|-----------------------------------------|-------------------------|
| 0x0640          | UVP1_VOLT    | 1st-level undervoltage protection (V)   | 80%Un                   |
| 0x0641          | UVP1_TIME    | 1st-level undervoltage trip time (T)    | 3 sec                   |
| 0x0642          | UVP2_VOLT    | 2nd-level undervoltage protection (V)   | 45%Un                   |
| 0x0643          | UVP2_TIME    | 2nd-level undervoltage<br>trip time (T) | 0.3sec                  |
| 0x0644          | UVP3_VOLT    | 3rd-level undervoltage protection (V)   | 45%Un                   |
| 0x0645          | UVP3_TIME    | 3rd-level undervoltage trip time (T)    | 0.3sec                  |

| Command<br>Code | Command Name  | Description                                    | Default<br>(0x02E5 = 0) |  |
|-----------------|---------------|------------------------------------------------|-------------------------|--|
| 0x0646          | OVP1_VOLT     | 1st-level overvoltage protection (V)           | 125%Un                  |  |
| 0x0647          | OVP1_TIME     | 1st-level overvoltage trip time (T)            | 0.1 sec                 |  |
| 0x0648          | OVP2_VOLT     | 2nd-level overvoltage protection (V)           | 125%Un                  |  |
| 0x0649          | OVP2_TIME     | 2nd-level overvoltage<br>trip time (T)         | 0.1 sec                 |  |
| 0x064A          | OVP3_VOLT     | 3rd-level overvoltage protection (V)           | 125%Un                  |  |
| 0x064B          | OVP3_TIME     | 3rd-level overvoltage trip time (T)            | 0.1 sec                 |  |
| 0x064C          | UFP1_FREQ     | 1st-level underfrequency threshold (H)         | 47.5Hz                  |  |
| 0x064D          | UFP1_TIME     | 1st-level underfrequency trip time (T)         | 0.1 sec                 |  |
| 0x064E          | UFP2_FREQ     | 2nd-level underfrequency<br>threshold (H)      | 47.5Hz                  |  |
| 0x064F          | UFP2_TIME     | 2nd-level underfrequency trip time (T)         | 0.1 sec                 |  |
| 0x0650          | UFP3_FREQ     | 3rd-level underfrequency threshold (H)         | 47.5Hz                  |  |
| 0x0651          | UFP3_TIME     | 3rd -level underfrequency trip time (T)        | 0.1 sec                 |  |
| 0x0652          | OFP1_FREQ     | 1st-level overfrequency<br>threshold (Hz)      | 51.5Hz                  |  |
| 0x0653          | OFP1_TIME     | 1st-level overfrequency trip time (T)          | 0.1 sec                 |  |
| 0x0654          | OFP2_FREQ     | 2nd-level overfrequency<br>threshold (Hz)      | 51.5Hz                  |  |
| 0x0655          | OFP2_TIME     | 2nd-level overfrequency trip time (T)          | 0.1 sec                 |  |
| 0x0656          | OFP3_FREQ     | 3rd-level overfrequency<br>threshold (Hz)      | 51.5Hz                  |  |
| 0x0657          | OFP3_TIME     | 3rd-level overfrequency trip time (T) 0.1 sec  |                         |  |
| 0x0658          | OVP10MIN_VOLT | 10-minute average overvoltage protection point | 110%Un                  |  |

OVP10min (0x0658) is based on the moving 10-minute RMS average of the input voltage, updated every 3 seconds.

#### 5.2.13 EEPROM Storage

The commands of 0x0200–0x0900 are frequently modified by the DSO. To avoid excessive EEPROM write cycles, modifed parameters are not stored into the EEPROM. As a result, these commands are reloaded with their default values when the device is powered off and restarted.

#### Related commands are as follows:

| Command<br>Code | Command Name     | Description                           | Range                     | Default |
|-----------------|------------------|---------------------------------------|---------------------------|---------|
| 0x02D1          | GRID_TIME_REMOTE | Grid connection ON/OFF control        | 00h(OFF)/01h(ON)          | 01h     |
| 0x02EC          | P_SET            | Maximum active power output setting   | 0~100%                    | 100%    |
| 0x02ED          | Q_SET            | Maximum reactive power output setting | -100~100%                 | 01h     |
| 0x02EE          | PF_SET           | cosφ set point                        | 0.9~1 over<br>0.9~1 under | 01h     |

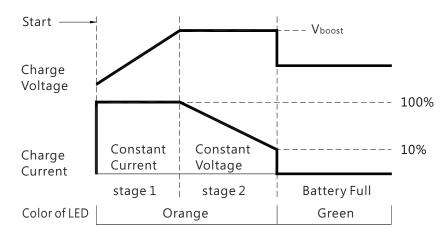
Commands outside the range of 0x0200-0x0900 are stored in the EEPROM (the EEP\_CONFIG function in SYSTEM\_CONFIG (CAN:0x00C2; MOD:0x00C4) is not supported).

To enable EEPROM storage for the four commands listed above, set CTRL\_STORAGE\_CFG[8] = 1 in the CTRL\_MODE (0x02E8) command.

#### 5.2.14 Password for the Grid Connection Parameters

According to the safety standard, only authorized DSO personnel are allowed to modify grid connection parameters. Access control is applied to prevent unauthorized changes. See Sections 6.1.4.4 and 6.2.6.3 for detailed configuration instructions.

### 5.3 Charger Mode


The device is in Charger Mode when low byte bit2 (CHG\_EN) is "logic high" in INV\_OPERATION (0x0100) command. Charger Mode supports both two-stage and three-stage charging. Two-stage charging provides a simple and fast charging process. Three-stage charging is similar to two-stage charging but maintains the battery voltage after the battery is fully charged. Users can select either two-stage or three-stage charging according to their requirements.

The supported commands are as follows:

| Command<br>Code | Command Name     | Description                                      | Default                                              |
|-----------------|------------------|--------------------------------------------------|------------------------------------------------------|
| 0x00B4          | CURVE_CONFIG     | Configuration setting of charging curve          | 0x0004                                               |
| 0x00B8          | CHG_STATUS       | Charger's status reporting                       |                                                      |
| 0x00B0          | CURVE_CC         | Constant current setting of charge curve         | 24V:171A<br>48V: 85.5A<br>96V: 44.5A<br>380V: 12.5A  |
| 0x00B1          | CURVE_CV         | Constant voltage setting of charge curve         | 24V:28.8V<br>48V: 57.6V<br>96V: 112V<br>380V: 400V   |
| 0x00B2          | CURVE_FV         | Floating voltage<br>setting of charge<br>curve   | 24V:27.6V<br>48V: 55.2V<br>96V: 108.8V<br>380V: 385V |
| 0x00B3          | CURVE_TC         | Taper current setting of charge curve            | 24V:17.1A<br>48V: 8.55A<br>96V: 4.45A<br>380V: 1.25A |
| 0x00B5          | CURVE_CC_TIMEOUT | CC stage timeout setting value of charging curve | 600 minute                                           |
| 0x00B6          | CURVE_CV_TIMEOUT | CV stage timeout setting value of charging curve | 600 minute                                           |
| 0x00B7          | CURVE_FV_TIMEOUT | FV stage timeout setting value of charging curve | 600 minute                                           |

#### 5.3.1 2 Stage Charging

In the initial stage of charging, the charger charges the battery with the maximum current. After a period of time (depending on the battery capacity), the charging current decreases gradually. When the charging current drops to 10% of the rated current and then LED indicator lights up in green, indicating that the charging process is complete.

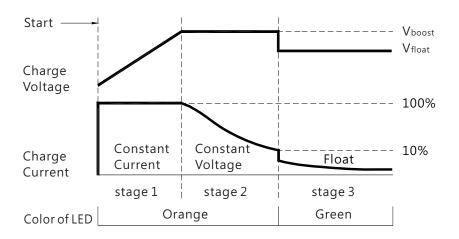


 $Explanation of 2 \, stage \, charging \, curve$ 

- ① Initial stage (battery analysis): Charger will detect and determine whether the battery is properly connected or it is already fully charged.
- ② Stage 1 (Constant current):

  Maximum constant current is applied for fast charging, until the voltage of battery reaches to boost voltage.
- ③ Stage 2 (Constant voltage): In this stage, charger applies a constant voltage on the battery. Charging current decreases gradually and then shuts down when charging current drops to 10% of rated current.
- \* Suitable for lead-acid batteries, such as flooded water type, Gelcolloid type, AGM adsorption glass fiber, and lithium batteries, such as lithium-iron, lithium-manganese, ternary lithium.

| 24V model                    |             |             |                    |  |  |  |  |
|------------------------------|-------------|-------------|--------------------|--|--|--|--|
| Description                  | CC(default) | TC(default) | $V_{\text{boost}}$ |  |  |  |  |
| Default, programmable        |             |             | 28.8V              |  |  |  |  |
| Pre-defined, gel battery     | 171A        | 17.1A       | 28.0V              |  |  |  |  |
| Pre-defined, flooded battery |             | _,,_,,      | 28.4V              |  |  |  |  |
| Pre-defined, LiFeO4 battery  |             |             | 29.2V              |  |  |  |  |


|                              | 48V model   |             |                    |
|------------------------------|-------------|-------------|--------------------|
| Description                  | CC(default) | TC(default) | $V_{\text{boost}}$ |
| Default, programmable        |             |             | 57.6V              |
| Pre-defined, gel battery     | 85.5A       | 8.55A       | 56.0V              |
| Pre-defined, flooded battery | 1 22.57.    |             | 56.8V              |
| Pre-defined, LiFeO4 battery  |             |             | 58.4V              |

|                       | 96V model   |             |                    |
|-----------------------|-------------|-------------|--------------------|
| Description           | CC(default) | TC(default) | $V_{\text{boost}}$ |
| Default, programmable | 44.5A       | 4.45A       | 112V               |

| 380V model  |             |                         |
|-------------|-------------|-------------------------|
| CC(default) | TC(default) | $V_{\text{boost}}$      |
|             |             | 400V                    |
| 12.5A       | 1.25A       | 390V                    |
|             |             | 395V                    |
|             |             | 400V                    |
|             |             | CC(default) TC(default) |

#### 5.3.2 3 Stage Charging

In the initial stage of charging, the charger charges the battery with the maximum current. After a period of time (depending on the battery capacity), the charging current decreases gradually. When the charging current drops to 10% of the rated current, LED indicator lights up in green, indicating that the charging process is completed and the charger remains at float charging stage.



- Explanation of 3 stage charging curve
- ① 1 Initial stage (battery analysis):
  Charger will detect and determine whether the battery is properly connected or it is already fully charged.
- 2 Stage 1 (Constant current): Maximum constant current is applied for fast charging, until the voltage of battery reaches to boost voltage.
- ③ 3 Stage 2 (Constant voltage): In this stage, charger applies a constant voltage on the battery. Charging current decreases gradually and then goes into the final stage when charging current drops to 10% of rated current.
- 4 Stage 3 (float charging): The charger is able to provide a float voltage after 2 stage charging in order to keep the battery fully charged at all times. Especially suitable for lead-acid batteries.
- \* Suitable for lead-acid batteries, such as flooded water type, Gelcolloid type, AGM adsorption glass fiber, and lithium batteries, such as lithium-iron, lithium-manganese, ternary lithium.

| 24V model                    |             |             |                    |                                      |  |  |  |  |  |
|------------------------------|-------------|-------------|--------------------|--------------------------------------|--|--|--|--|--|
| Description                  | CC(default) | TC(default) | $V_{\text{boost}}$ | V <sub>float</sub><br>(3 stage only) |  |  |  |  |  |
| Default, programmable        |             |             | 28.8V              | 27.6V                                |  |  |  |  |  |
| Pre-defined, gel battery     | 171A        | 17.1A       | 28.0V              | 27.2V                                |  |  |  |  |  |
| Pre-defined, flooded battery |             | ·           | 28.4V              | 26.8V                                |  |  |  |  |  |
| Pre-defined, LiFeO4 battery  |             |             | 29.2V              | 28.0V                                |  |  |  |  |  |

| 48V model                    |             |             |                    |                                      |  |  |  |  |  |
|------------------------------|-------------|-------------|--------------------|--------------------------------------|--|--|--|--|--|
| Description                  | CC(default) | TC(default) | $V_{\text{boost}}$ | V <sub>float</sub><br>(3 stage only) |  |  |  |  |  |
| Default, programmable        |             |             | 57.6V              | 55.2V                                |  |  |  |  |  |
| Pre-defined, gel battery     | 85.5A       | 8.55A       | 56.0V              | 54.4V                                |  |  |  |  |  |
| Pre-defined, flooded battery |             |             | 56.8V              | 53.6V                                |  |  |  |  |  |
| Pre-defined, LiFeO4 battery  |             |             | 58.4V              | 56.0V                                |  |  |  |  |  |

| 96V model             |             |             |                    |                                      |  |  |
|-----------------------|-------------|-------------|--------------------|--------------------------------------|--|--|
| Description           | CC(default) | TC(default) | $V_{\text{boost}}$ | V <sub>float</sub><br>(3 stage only) |  |  |
| Default, programmable | 44.5A       | 4.45A       | 112V               | 108.8V                               |  |  |

| 380V model                   |             |             |                    |                                      |  |  |  |  |  |
|------------------------------|-------------|-------------|--------------------|--------------------------------------|--|--|--|--|--|
| Description                  | CC(default) | TC(default) | $V_{\text{boost}}$ | V <sub>float</sub><br>(3 stage only) |  |  |  |  |  |
| Default, programmable        |             |             | 400V               | 385V                                 |  |  |  |  |  |
| Pre-defined, gel battery     | 12.5A       | 1.25A       | 390V               | 380V                                 |  |  |  |  |  |
| Pre-defined, flooded battery |             |             | 395V               | 372V                                 |  |  |  |  |  |
| Pre-defined, LiFeO4 battery  |             |             | 400V               | 388V                                 |  |  |  |  |  |

# 5.4 Inrush Current Limiting

- Built-in AC inrush current limiting circuit
- The inrush current limiting circuit prevents excessive current at startup. To prevent repeated switching, which may further increase inrush current, allow a 10-second cooldown before turning the device on again.

# 5.5 Power Factor Correction (PFC)

Built-in active power factor correction (PFC) function, power factor (PF) will be 0.98 or better at full load condition in AC to DC conversion.
 PF will be less than 0.98 if it is not at full load condition during AC to DC conversion.

# 5.6 Fan Speed control

• Built-in fan speed control circuit, fan speed changes automatically depending on internal temperature.

# 5.7 Fault Signal

- Fault signal is used to inform application equipment that whether it is energy recyclable. When it is OLP, SCP or OTP, BIC-5K will send a high level of fault signal 100ms in advance to notify the application before shutting down the supply. A fault signal will send out at the same time of shutting down operation in the reset of protection (e.g. AC\_fail).
- Maximum output current 4mA.



| Fault to GND-AUX2 | Condition             |
|-------------------|-----------------------|
| -0.5~0.5V         | Normal<br>working     |
| 4.5~5.5V          | Not energy recyclable |

# 5.8 DC-OK Signal

- Built-in DC output voltage detection circuit.
- Maximum output current 4mA.



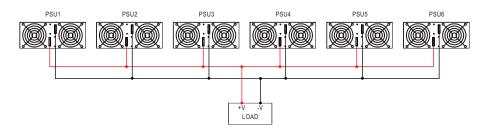
| DC-OK to GND-AUX2 | Condition          |
|-------------------|--------------------|
| -0.5~2.5V         | DC OK              |
| 4.5~5.5V          | Abnormal in DC end |

# 5.9 Remote Control

- Built-in Remote ON/OFF control circuit, which is used to turn on/off the device.
- Please be aware that "Remote ON/OFF"+5V-AUX" on PAR1,PAR2 should be linked together to allow the unit to operate normally; if kept open, there will be no output.
- Maximum input voltage 5.5V.
- The devices in BIC/50549/Charger Mode trun on when Remote Control is on.



| REMOTE ON_OFF to +5V-AUX2 | Condition |
|---------------------------|-----------|
| Short                     | ON        |
| Open                      | OFF       |


# 5.10 Current Sharing

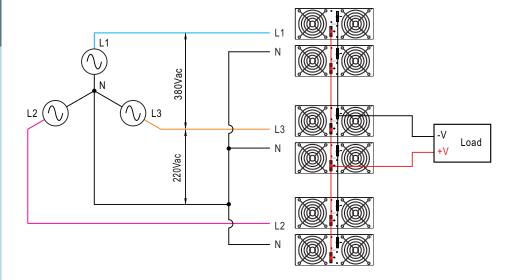
BIC-5K has the built-in active current sharing function and can be connected in parallel, up to 6 units, to provide higher output power as exhibited below:

- The power supplies should be paralleled using short and large diameter wiring and then connected to the load.
- In parallel connection, power supply with the highest output Voltage will be the master unit and its Vout
- The total output current must not exceed the value determined by the following equation:
   Maximum output current at parallel operation=(Rated current per unit)×
- (Number of unit) × 0.95
  When the total output current is less than 5% of the total rated current, or say (5% of Rated current per unit) × (Number of unit) the
- PAR1/PAR2, PRL Function pin connection

|          | PSU1          |     | PSU1 PSU2 P   |     | PS            | U3 PSU4 |               | PSU5 |               | PSU6 |               |     |
|----------|---------------|-----|---------------|-----|---------------|---------|---------------|------|---------------|------|---------------|-----|
| Parallel | PAR1/<br>PAR2 | PRL | PAR1/<br>PAR2 | PRL | PAR1/<br>PAR2 | PRL     | PAR1/<br>PAR2 | PRL  | PAR1/<br>PAR2 | PRL  | PAR1/<br>PAR2 | PRL |
| 1 unit   | Х             | ON  | _             | _   | _             | _       | _             | _    | _             | _    | _             | _   |
| 2 unit   | ٧             | ON  | ٧             | ON  | -             | _       | -             | -    | _             | _    | -             | _   |
| 3 unit   | ٧             | ON  | ٧             | OFF | ٧             | ON      | -             | _    | -             | _    | _             | _   |
| 4 unit   | ٧             | ON  | ٧             | OFF | ٧             | OFF     | ٧             | ON   | _             | _    | _             | _   |
| 5 unit   | ٧             | ON  | ٧             | OFF | ٧             | OFF     | ٧             | OFF  | ٧             | ON   | _             | _   |
| 6 unit   | V             | ON  | V             | OFF | V             | OFF     | V             | OFF  | V             | OFF  | V             | ON  |

current shared among units may not be balanced.

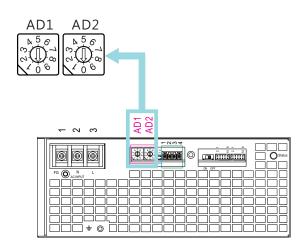





If the lines of PAR1 / PAR2 are too long, they should be twisted in pairs to avoid the noise.

#### 5.10.1 Parallel Operation with 3-phase 4-wire System

When operating BIC-5K units in parallel, their AC side can be connected to either a single-phase or three-phase, four-wire AC system.


To ensure balanced current distribution in the AC system, it is generally recommended to evenly distribute the BIC-5K units across the phases. For example, when using six BIC-5K units in parallel, two units can be connected with AC/L to L1 and AC/N to N, another two units with AC/L to L2 and AC/N to N, and the remaining two with AC/L to L3 and AC/N to N, as illustrated in the diagram below.



### 5.11 Factory Resetting

Users can follow the steps below to restore factory settings for commands: 0x0000, 0x0020, 0x0030, 0x00B0, 0x00B1, 0x00B2, 0x00B3, 0x00B4, 0x00B5, 0x00B6, 0x00B7, 0x00B9, 0x00BA, 0x00BB, 0x00C2, 0x0100, 0x0140, 0x0143, 0x0150, 0x02D2, 0x02D3, 0x02D4, 0x02D5, 0x02D6, 0x02D7, 0x02D7, 0x02D8, 0x02E4, 0x02E8, 0x02E9, 0x02EA, 0x02EB, 0x02EF ~ 0x065A) :

- (1) Set the rotary swithces of AD1 and AD2 to position 0.
- (2) Turn on the device with remote off by applying DC energy. There should be no AC output in this condition.
- (3) Rotate the AD2 from position <u>0</u> to position <u>7</u> and then back to position <u>0</u> again within <u>15</u> seconds after DC is applied.
- (4) If the LED indicators flash green three times, it means that the reset procedure has been done successfully. Reboot to apply the default settings.
- (5) If the EEPROM storage function was DISABLE (high byte bit 2 set to "logic 1" in SYSTEM\_CONFIG), please perform step ① ④ again to fully restore the parameters back to factory settings



#### NOTE:

This procedure resets all 50549 settings to factory defaults, including password for the grid connection parameters. When used in 50549 mode, consult the local DSO or power company first to prevent grid tripped or other grid conneciton issues.


### 6.Communication Protocol

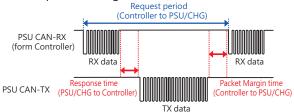
#### 6.1 CANBus Protocol

CANBus communication interface provides control and monitoring functions. It is helpful when users intent to modify the parameters remotely. Users can read and write the parameters through the bus, which includes BIC/50549/Charger Mode seting, operation ON/OFF, charge voltage/current, discharge voltage/ current, temperature monitoring, etc.

### 6.1.1 CANBus Specification

- Physical layer specification
   This protocol follows CAN ISO-11898 with Baud rate of 250Kbps
- Data Frame
   This protocol utilizes Extended CAN 29-bit identifier frame format or CAN 2.0B.




Communication Timing

6

Min. request period (Controller to BIC-5K): 50mSec  $^{\circ}$ 

Max. response time (BIC-5K to Controller): 12.5mSec •

Min. packet margin time (Controller to BIC-5K): 12.5mSec  $\,^{\circ}$ 



Data Field Forma

Controller to BIC

Write: Please refer to section 6.1.4.1

Data filed bytes

| 0              | 1               | 2             | 3              |
|----------------|-----------------|---------------|----------------|
| COMD. low byte | COMD. high byte | Data low byte | Data high byte |

Read: Please refer to section 6.1.4.2

Data filed bytes

| 0              | 1               |  |
|----------------|-----------------|--|
| COMD. low byte | COMD. high byte |  |

#### 6.1.2 Message ID Definition

Each BIC-5K unit should have their unique and own device address to communicate over the bus. AD1 and AD2 allow users to designate an address for their units (with maximum of 64 addresses).

| Description                                | Message ID |
|--------------------------------------------|------------|
| BIC-5K to controller Message ID            | 0x000C02XX |
| Controller to BIC-5K Message ID            | 0x000C03XX |
| Controller broadcasts to BIC-5K Message ID | 0x000C03FF |

Note: XX means the address of the BIC-5K. Please refer to 4.7 Communication Address/ID Assignment for detailed.

#### 6.1.3 CANBus command list

ORANGE: BIC Mode Dedicated Commands
BLUE: 50549 Mode Dedicated Commands
GREEN: Charger Mode Dedicated Commands

| Command<br>Code | Command<br>Name        | Transaction<br>Type | # of data<br>Bytes | Description                                           |
|-----------------|------------------------|---------------------|--------------------|-------------------------------------------------------|
| 0x0000          | OPERATION              | R/W                 | 1                  | 01:ON/00:OFF                                          |
| 0x0020          | VOUT_SET*              | R/W                 | 2                  | Charge voltage setting (Factor = 0.01)                |
| 0x0030          | IOUT_SET*              | R/W                 | 2                  | Charge current setting (Factor = 0.01)                |
| 0x0040          | FAULT_STATUS           | R                   | 2                  | Summary status reporting                              |
| 0x0050          | READ_VIN               | R                   | 2                  | Single-phase input voltage (Bypass) (Factor = 0.1)    |
| 0x0053          | READ_IIN               | R                   | 2                  | Single-phase input current(Bypass) (Factor = 0.1)     |
| 0x0056          | READ_FREQ              | R                   | 2                  | Single-phase input frequency (Bypass) (Factor = 0.01) |
| 0x0060          | READ_VOUT              | R                   | 2                  | DC voltage reading value (Factor = 0.01)              |
| 0x0061          | READ_IOUT              | R                   | 2                  | DC current reading value (Factor = 0.01)              |
| 0x0062          | READ_<br>TEMPERATURE_1 | R                   | 2                  | Internal ambient temperature (Factor = 0.1)           |
| 0x0070          | READ_FAN_SPEED_1       | R                   | 2                  | Fan speed 1 reading value (Factor = 1)                |

| Command<br>Code | Command<br>Name   | Transaction<br>Type | # of data<br>Bytes | Description                                                                                                     |
|-----------------|-------------------|---------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| 0x0071          | READ_FAN_SPEED_2  | R                   | 2                  | Fan speed 2 reading value (Factor = 1)                                                                          |
| 0x0080          | MFR_ID_B0B5       | R                   | 6                  | Manufacturer's name                                                                                             |
| 0x0081          | MFR_ID_B6B11      | R                   | 6                  | Manufacturer's name                                                                                             |
| 0x0082          | MFR_MODEL_B0B5    | R                   | 6                  | Manufacturer's model name                                                                                       |
| 0x0083          | MFR_MODEL_B6B11   | R                   | 6                  | Manufacturer's model name                                                                                       |
| 0x0084          | MFR_REVISION_B0B5 | R                   | 6                  | Firmware revision                                                                                               |
| 0x0085          | MFR_LOCATION_B0B2 | R                   | 3                  | Manufacturer's factory location                                                                                 |
| 0x0086          | MFR_DATE_B0B5     | R                   | 6                  | Manufacturer's date                                                                                             |
| 0x0087          | MFR_SERIAL_B0B5   | R                   | 6                  | Product serial number                                                                                           |
| 0x0088          | MFR_SERIAL_B6B11  | R                   | 6                  | Product serial number                                                                                           |
| 0x00B0          | CURVE_CC*         | R/W                 | 2                  | Constant current setting of charge curve $(Factor = 0.01)$                                                      |
| 0x00B1          | CURVE_CV*         | R/W                 | 2                  | Constant voltage setting of charge curve $(Factor = 0.01)$                                                      |
| 0x00B2          | CURVE_FV*         | R/W                 | 2                  | Floating voltage setting of charge curve (Factor = 0.01)                                                        |
| 0x00B3          | CURVE_TC*         | R/W                 | 2                  | Taper current setting of charge curve (Factor = 0.01)                                                           |
| 0x00B4          | CURVE_CONFIG      | R/W                 | 2                  | Configuration setting of charging curve                                                                         |
| 0x00B5          | CURVE_CC_TIMEOUT  | R/W                 | 2                  | $ \begin{array}{c} \text{CC stage timeout setting value of charging curve} \\ \text{(Factor} = 1) \end{array} $ |
| 0x00B6          | CURVE_CV_TIMEOUT  | R/W                 | 2                  | CV stage timeout setting value of charging curve $(Factor = 1)$                                                 |

| Command<br>Code | Command<br>Name  | Transaction<br>Type | # of data<br>Bytes | Description                                                      |
|-----------------|------------------|---------------------|--------------------|------------------------------------------------------------------|
| 0x00B7          | CURVE_FV_TIMEOUT | R/W                 | 2                  | FV stage timeout setting value of charging curve (Factor $= 1$ ) |
| 0x00B8          | CHG_STATUS       | R                   | 2                  | Charger's status reporting                                       |
| 0x00B9          | BAT_ALM_VOLT*    | R/W                 | 2                  | Battery low voltage alarm threshold (Factor = $0.01$ )           |
| 0x00BA          | BAT_SHDN_VOLT*   | R/W                 | 2                  | Battery low voltage shutdown threshold (Factor = 0.01)           |
| 0x00BB          | BAT_RCHG_VOLT*   | R/W                 | 2                  | Battery recharge voltage threshold (Factor = 0.01)               |
| 0x00BC          | BAT_OV_ALM_VOLT  | R/W                 | 2                  | Battery high voltage alarm threshold (Factor=0.01)               |
| 0x00C0          | SCALING_FACTOR   | R                   | 6                  | Scaling ratio                                                    |
| 0x00C1          | SYSTEM_STATUS    | R                   | 2                  | System status                                                    |
| 0x00C2          | SYSTEM_CONFIG    | R/W                 | 2                  | System configuration                                             |
| 0x00CF          | SETTING_UBLOCK   | W                   | 2                  | Setting unlock for user (NOTE1)                                  |
| 0x0100          | INV_OPERATION    | R/W                 | 2                  | Main mode configuration                                          |
| 0x011A          | READ_VBAT        | R                   | 2                  | Battery voltage read value (Factor = 0.01)                       |
| 0x011B          | READ_CHG_CURR    | R                   | 2                  | Battery current read value (Factor = 0.01)                       |
| 0x011C          | BAT_CAPACITY     | R                   | 2                  | Battery capacity percent read value, 0~100%                      |
| 0x011D          | INV_STATUS       | R                   | 2                  | Inverter operation status reading                                |
| 0x011F          | READ_BP_WATT_HI  | R                   | 2                  | Bypass wattage read value (High) (Factor = 0.1)                  |
| 0x0120          | READ_BP_WATT_LO  | R                   | 2                  | Bypass wattage read value (Low) (Factor = 0.1)                   |

| Command<br>Code | Command<br>Name | Transaction<br>Type | # of data<br>Bytes | Description                                            |
|-----------------|-----------------|---------------------|--------------------|--------------------------------------------------------|
| 0x0125          | READ_BP_VA_HI   | R                   | 2                  | Bypass apparent power read value (High) (Factor = 0.1) |
| 0x0126          | READ_BP_VA_LO   | R                   | 2                  | Bypass apparent power read value (Low) (Factor = 0.1)  |
| 0x0140          | DIR_CTRL        | R/W                 | 1                  | A/D or D/A conversion control<br>00: A/D<br>01: D/A    |
| 0x0141          | VOUT_SET_REV*   | R/W                 | 2                  | Discharge voltage setting (Factor = 0.01)              |
| 0x0142          | IOUT_SET_REV*   | R/W                 | 2                  | Discharge current setting (Factor = 0.01)              |
| 0x0143          | BIDIR_CONFIG    | R/W                 | 2                  | Bidirectional mode configuration                       |
| 0x0150          | POUT_USER_CMD   | R/W                 | 2                  | Power output control for user (Factor = 0.1)           |
| 0x0202          | AC_TYPE         | R                   | 2                  | AC type reading                                        |
| 0x0203          | INV_STATE       | R                   | 2                  | Operation state reporting                              |
| 0x0204          | CONNECT_STATE   | R                   | 2                  | Grid connection state reporting                        |
| 0x0205          | GRID_ALARM      | R                   | 2                  | Grid mode alarm reporting                              |
| 0x020B          | W               | R                   | 2                  | Active power read value (Factor = 0.1)                 |
| 0x020C          | VA              | R                   | 2                  | Apprent power read value (Factor = 0.1)                |
| 0x020D          | VAR             | R                   | 2                  | Reactive power read value (Factor = 0.1)               |
| 0x020E          | PF              | R                   | 2                  | Power factor read value (Factor = 0.01)                |
| 0x020F          | А               | R                   | 2                  | Total AC current read value (Factor = 0.01)            |
| 0x0210          | LLA             | R                   | 2                  | Line to nature voltage read value (Factor = 0.01)      |
|                 |                 |                     |                    |                                                        |

| Command<br>Code | Command<br>Name    | Transaction<br>Type | # of data<br>Bytes | Description                                                 |
|-----------------|--------------------|---------------------|--------------------|-------------------------------------------------------------|
| 0x0211          | LNV                | R                   | 2                  | Line to nature voltage read value (Factor = 0.01)           |
| 0x0212          | HZ                 | R                   | 2                  | AC frequency read value (Factor = 0.01)                     |
| 0x0248          | THROT_SRC          | R                   | 4                  | Activated functions for grid control reporting              |
| 0x029D          | W_MAX_RTG          | R                   | 2                  | Maximum active power output rating (Factor = 1)             |
| 0x029E          | W_OVR_EXT_RTG      | R                   | 2                  | Rated active power under overexcitation (Factor = 1)        |
| 0x029F          | W_OVR_EXT_RTG_PF   | R                   | 2                  | Rated power factor under overexcitation $(Factor = 0.01)$   |
| 0x02A0          | W_UND_EXT_RTG      | R                   | 2                  | Rated active power under under excitation $(Factor = 1)$    |
| 0x02A1          | W_UND_EXT_RTG_PF   | R                   | 2                  | Rated power factor under under excitation $(Factor = 0.01)$ |
| 0x02A2          | VA_MAX_RTG         | R                   | 2                  | Maximum apparent power output rating (Factor = 1)           |
| 0x02A3          | VAR_MAX_INJ_RTG    | R                   | 2                  | Rated reactive power during injection (Factor = 1)          |
| 0x02A4          | VAR_MAX_ABS_RTG    | R                   | 2                  | Rated reactive power during absorption (Factor = 1)         |
| 0x02A7          | V_NOR_RTG          | R                   | 2                  | Normal AC voltage rating (Factor = 0.01)                    |
| 0x02A8          | V_MAX_RTG          | R                   | 2                  | Maximum AC voltage rating (Factor = 0.01)                   |
| 0x02A9          | V_MIN_RTG          | R                   | 2                  | Minimum AC voltage rating (Factor = 0.01)                   |
| 0x02AA          | A_MAX_RTG          | R                   | 2                  | Maximum AC current rating (Factor = 0.01)                   |
| 0x02D1          | GRID_TIE_REMOTE    | R/W                 | 1                  | Remote on/off for grid mode                                 |
| 0x02D2          | CONNECT_UPPER_VOLT | R/W                 | 2                  | Upper voltage<br>(format, *0.01%Un)                         |

| Command<br>Code | Command<br>Name    | Transaction<br>Type | # of data<br>Bytes | Description                                                     |
|-----------------|--------------------|---------------------|--------------------|-----------------------------------------------------------------|
| 0x02D3          | CONNECT_LOWER_VOLT | R/W                 | 2                  | Lower voltage<br>(format, *0.01%Un)                             |
| 0x02D4          | CONNECT_UPPER_FREQ | R/W                 | 2                  | Upper frequency<br>(format, *0.01Hz)                            |
| 0x02D5          | CONNECT_LOWER_FREQ | R/W                 | 2                  | Lower frequency<br>(format, *0.01Hz)                            |
| 0x02D6          | CONNECT_DLY_TIME   | R/W                 | 2                  | Observation time (format, *0.01sec)                             |
| 0x02D7          | CONNECT_P_RATE     | R/W                 | 2                  | The ramp-rate for conneciton (format, *1%Pn/sec)                |
| 0x02D8          | RECONNECT_P_RATE   | R/W                 | 2                  | The ramp-rate for reconneciton (format, *1%Pn/sec)              |
| 0x02E4          | SAFTY_FUNC_CONFIG  | R/W                 | 2                  | Safety function configuration                                   |
| 0x02E5          | COUNTRY_SET        | R/W                 | 1                  | Country/region configuration                                    |
| 0x02E8          | CTRL_MODE          | R/W                 | 2                  | Control mode                                                    |
| 0x02E9          | P_SET_RATE         | R/W                 | 2                  | The ramp-rate for active power (format, *1%Pn/sec)              |
| 0x02EA          | P_TAU              | R/W                 | 2                  | The time constantFor P(U) (format, *0.01sec)                    |
| 0x02EB          | Q_TAU              | R/W                 | 2                  | The time constant For reactive power setting (format, *0.01sec) |
| 0x02EC          | P_SET              | R/W                 | 2                  | Maximum active power output setting (format, *0.1%Pn)           |
| 0x02ED          | Q_SET              | R/W                 | 2                  | Maximum reactive power output setting (format, *0.1%Qn)         |
| 0x02EE          | PF_SET             | R/W                 | 2                  | cosφ set point<br>(format, *0.01 PF)                            |
| 0x02EF          | PF_P_LOCKIN_V      | R/W                 | 2                  | Lock in voltage for cosφ(P) mode (format, *0.01%Un)             |
| 0x02F0          | PF_P_LOCKOUT_V     | R/W                 | 2                  | Lock out voltage for cosφ(P) mode (format, *0.01%Un)            |

| Command<br>Code | Command<br>Name | Transaction<br>Type | # of data<br>Bytes | Description                                                      |
|-----------------|-----------------|---------------------|--------------------|------------------------------------------------------------------|
| 0x02F1          | PF_P_CURVE_PF1  | R/W                 | 2                  | F1 on the cosφ(P) Curve (format, *0.01 PF)                       |
| 0x02F2          | PF_P_CURVE_P1   | R/W                 | 2                  | P1 on the cosφ(P) Curve<br>(format, *0.1%Pn)                     |
| 0x02F3          | PF_P_CURVE_PF2  | R/W                 | 2                  | Pf2 on the cosφ(P) Curve (format, *0.01 PF)                      |
| 0x02F4          | PF_P_CURVE_P2   | R/W                 | 2                  | P2 on the cosφ(P) Curve<br>(format, *0.1%Pn)                     |
| 0x02F5          | PF_P_CURVE_PF3  | R/W                 | 2                  | Pf3 on the cosφ(P) Curve (format, *0.01 PF)                      |
| 0x02F6          | PF_P_CURVE_P3   | R/W                 | 2                  | P3 on the cosφ(P) Curve<br>(format, *0.1%Pn)                     |
| 0x02F7          | PF_P_CURVE_PF4  | R/W                 | 2                  | Pf4 on the cosφ(P) Curve (format, *0.01 PF)                      |
| 0x02F8          | PF_P_CURVE_P4   | R/W                 | 2                  | P4 on the cosφ(P) Curve<br>(format, *0.1%Pn)                     |
| 0x0327          | Q_P_CURVE_Q1    | R/W                 | 2                  | Q1 on the Q(P) Curve (format, *0.01%Qn)                          |
| 0x0328          | Q_P_CURVE_P1    | R/W                 | 2                  | P1 on the Q(P) Curve (format, *0.1%Pn)                           |
| 0x0329          | Q_P_CURVE_Q2    | R/W                 | 2                  | Q2 on the Q(P) Curve (format, *0.1%Qn)                           |
| 0x032A          | Q_P_CURVE_P2    | R/W                 | 2                  | P2 on the Q(P) Curve (format, *0.1%Pn)                           |
| 0x032B          | Q_P_CURVE_Q3    | R/W                 | 2                  | Q3 on the Q(P) Curve (format, *0.1%Qn)                           |
| 0x032C          | Q_P_CURVE_P3    | R/W                 | 2                  | P3 on the Q(P) Curve (format, *0.1%Pn)                           |
| 0x032D          | Q_P_CURVE_Q4    | R/W                 | 2                  | Q4 on the Q(P) Curve (format, *0.1%Qn)                           |
| 0x032E          | Q_P_CURVE_P4    | R/W                 | 2                  | P4 on the Q(P) Curve<br>(format, *0.1%Pn)                        |
| 0x035D          | Q_V_MIN_COS     | R/W                 | 2                  | Minimum power factor limitation for Q(U) mode (format, *0.01 PF) |

| Command<br>Code | Command<br>Name | Transaction<br>Type | # of data<br>Bytes | Description                                            |
|-----------------|-----------------|---------------------|--------------------|--------------------------------------------------------|
| 0x035E          | Q_V_LOCKIN_P    | R/W                 | 2                  | Lock in power for Q(U) mode (format, *0.1%Pn)          |
| 0x035F          | Q_V_LOCKOUT_P   | R/W                 | 2                  | Lock out power for Q(U) mode (format, *0.1%Pn)         |
| 0x0360          | Q_V_CURVE_Q1    | R/W                 | 2                  | Q1 on the Q(U) Curve<br>(format, *0.1%Qn)              |
| 0x0361          | Q_V_CURVE_V1    | R/W                 | 2                  | V1 on the Q(U) Curve<br>(format, *0.01%Un)             |
| 0x0362          | Q_V_CURVE_Q2    | R/W                 | 2                  | Q <sub>2</sub> on the Q(U) Curve<br>(format, *0.1%Qn)  |
| 0x0363          | Q_V_CURVE_V2    | R/W                 | 2                  | V <sub>2</sub> on the Q(U) Curve<br>(format, *0.01%Un) |
| 0x0364          | Q_V_CURVE_Q3    | R/W                 | 2                  | Q3 on the Q(U) Curve (format, *0.1%Qn)                 |
| 0x0365          | Q_V_CURVE_V3    | R/W                 | 2                  | V <sub>3</sub> on the Q(U) Curve (format, *0.01%Un)    |
| 0x0366          | Q_V_CURVE_Q4    | R/W                 | 2                  | Q4 on the Q(U) Curve<br>(format, *0.1%Qn)              |
| 0x0367          | Q_V_CURVE_V4    | R/W                 | 2                  | V4 on the Q(U) Curve<br>(format, *0.01%Un)             |
| 0x03A0          | P_V_CURVE_P1    | R/W                 | 2                  | P1 on the P(U) Curve<br>(format, *0.1%Pn)              |
| 0x03A1          | P_V_CURVE_V1    | R/W                 | 2                  | V <sub>1</sub> on the P(U) Curve<br>(format, *0.01%Un) |
| 0x03A2          | P_V_CURVE_P2    | R/W                 | 2                  | P2 on the P(U) Curve<br>(format, *0.1%Pn)              |
| 0x03A3          | P_V_CURVE_V2    | R/W                 | 2                  | V <sub>2</sub> on the P(U) Curve<br>(format, *0.01%Un) |
| 0x03A4          | P_V_CURVE_P3    | R/W                 | 2                  | P3 on the P(U) Curve<br>(format, *0.1%Pn)              |
| 0x03A5          | P_V_CURVE_V3    | R/W                 | 2                  | V <sub>3</sub> on the P(U) Curve (format, *0.01%Un)    |
| 0x03A6          | P_V_CURVE_P4    | R/W                 | 2                  | P4 on the P(U) Curve<br>(format, *0.1%Pn)              |

| Command<br>Code | Command<br>Name | Transaction<br>Type | # of data<br>Bytes | Description                                            |
|-----------------|-----------------|---------------------|--------------------|--------------------------------------------------------|
| 0x03A7          | P_V_CURVE_V4    | R/W                 | 2                  | V4 on the P(U) Curve<br>(format, *0.01%Un)             |
| 0x03D9          | UVRT_VOLT1      | R/W                 | 2                  | V1 on the UVRT Curve<br>(format, *0.01%Un)             |
| 0x03DA          | UVRT_TIME1      | R/W                 | 2                  | T1 on the UVRT Curve (format, *0.01sec)                |
| 0x03DB          | UVRT_VOLT2      | R/W                 | 2                  | V <sub>2</sub> on the UVRT Curve<br>(format, *0.01%Un) |
| 0x03DC          | UVRT_TIME2      | R/W                 | 2                  | T <sub>2</sub> on the UVRT Curve (format, *0.01sec)    |
| 0x03DD          | UVRT_VOLT3      | R/W                 | 2                  | V <sub>3</sub> on the UVRT Curve<br>(format, *0.01%Un) |
| 0x03DE          | UVRT_TIME3      | R/W                 | 2                  | T <sub>3</sub> on the UVRT Curve (format, *0.01sec)    |
| 0x03DF          | UVRT_VOLT4      | R/W                 | 2                  | V4 on the UVRT Curve<br>(format, *0.01%Un)             |
| 0x03E0          | UVRT_TIME4      | R/W                 | 2                  | T4 on the UVRT Curve (format, *0.01sec)                |
| 0x03E1          | UVRT_VOLT5      | R/W                 | 2                  | V5 on the UVRT Curve<br>(format, *0.01%Un)             |
| 0x03E2          | UVRT_TIME5      | R/W                 | 2                  | Ts on the UVRT Curve (format, *0.01sec)                |
| 0x03E3          | UVRT_VOLT6      | R/W                 | 2                  | V6 on the UVRT Curve<br>(format, *0.01%Un)             |
| 0x03E4          | UVRT_TIME6      | R/W                 | 2                  | T <sub>6</sub> on the UVRT Curve (format, *0.01sec)    |
| 0x03E5          | UVRT_VOLT7      | R/W                 | 2                  | V7 on the UVRT Curve<br>(format, *0.01%Un)             |
| 0x03E6          | UVRT_TIME7      | R/W                 | 2                  | T7 on the UVRT Curve (format, *0.01sec)                |
| 0x0468          | OVRT_VOLT1      | R/W                 | 2                  | V1 on the OVRT Curve<br>(format, *0.01%Un)             |
| 0x0469          | OVRT_TIME1      | R/W                 | 2                  | T1 on the OVRT Curve (format, *0.01sec)                |

| Command<br>Code | Command<br>Name  | Transaction<br>Type | # of data<br>Bytes | Description                                            |
|-----------------|------------------|---------------------|--------------------|--------------------------------------------------------|
| 0x046A          | OVRT_VOLT2       | R/W                 | 2                  | V <sub>2</sub> on the OVRT Curve<br>(format, *0.01%Un) |
| 0x046B          | OVRT_TIME2       | R/W                 | 2                  | T <sub>2</sub> on the OVRT Curve (format, *0.01sec)    |
| 0x046C          | OVRT_VOLT3       | R/W                 | 2                  | V <sub>3</sub> on the OVRT Curve (format, *0.01%Un)    |
| 0x046D          | OVRT_TIME3       | R/W                 | 2                  | T <sub>3</sub> on the OVRT Curve (format, *0.01sec)    |
| 0x046E          | OVRT_VOLT4       | R/W                 | 2                  | V4 on the OVRT Curve<br>(format, *0.01%Un)             |
| 0x046F          | OVRT_TIME4       | R/W                 | 2                  | T4 on the OVRT Curve<br>(format, *0.01sec)             |
| 0x0470          | OVRT_VOLT5       | R/W                 | 2                  | V5 on the OVRT Curve (format, *0.01%Un)                |
| 0x0471          | OVRT_TIME5       | R/W                 | 2                  | Ts on the OVRT Curve (format, *0.01sec)                |
| 0x0472          | OVRT_VOLT6       | R/W                 | 2                  | V <sub>6</sub> on the OVRT Curve<br>(format, *0.01%Un) |
| 0x0473          | OVRT_TIME6       | R/W                 | 2                  | T <sub>6</sub> on the OVRT Curve (format, *0.01sec)    |
| 0x0474          | OVRT_VOLT7       | R/W                 | 2                  | V7 on the OVRT Curve<br>(format, *0.01%Un)             |
| 0x0475          | OVRT_TIME7       | R/W                 | 2                  | T7 on the OVRT Curve (format, *0.01sec)                |
| 0x0609          | LFSMO_FREQ_START | R/W                 | 2                  | Start frqency of LFSM-O<br>(format, *0.01Hz)           |
| 0x060A          | LFSMO_FREQ_STOP  | R/W                 | 2                  | Stop frqency of LFSM-O (format, *0.01Hz)               |
| 0x060B          | LFSMO_STOP_DLY   | R/W                 | 2                  | Stop deay of LFSM-O<br>(format, *0.01sec)              |
| 0x060C          | LFSMO_DROOP_RATE | R/W                 | 2                  | Droop rate of LFSM-O (format, *0.1%)                   |
| 0x060D          | LFSMO_ACTIVE_DLY | R/W                 | 2                  | Activation delay of LFSM-O (format, *0.01%)            |

| Command<br>Code | Command<br>Name  | Transaction<br>Type | # of data<br>Bytes | Description                                                |
|-----------------|------------------|---------------------|--------------------|------------------------------------------------------------|
| 0x060E          | LFSMU_FREQ_START | R/W                 | 2                  | Start frqency of LFSM-U<br>(format, *0.01Hz)               |
| 0x0611          | LFSMU_DROOP_RATE | R/W                 | 2                  | Droop rate of LFSM-U (format, *0.1%)                       |
| 0x0612          | LFSMU_ACTIVE_DLY | R/W                 | 2                  | Activation delay of LFSM-U (format, *0.01sec)              |
| 0x0613          | LFSM_P_REF       | R/W                 | 2                  | LFSM Pref setting<br>(0: Pn; 1: PM)                        |
| 0x0640          | UVP1_VOLT        | R/W                 | 2                  | 1st-level undervoltage protection (V) (format, *0.01%Un)   |
| 0x0641          | UVP1_TIME        | R/W                 | 2                  | 1st-level undervoltage trip time (T) (format, *0.01sec)    |
| 0x0642          | UVP2_VOLT        | R/W                 | 2                  | 2nd-level undervoltage protection (V) (format, *0.01%Un)   |
| 0x0643          | UVP2_TIME        | R/W                 | 2                  | 2nd-level undervoltage trip time (T) (format, *0.01sec)    |
| 0x0644          | UVP3_VOLT        | R/W                 | 2                  | 3rd-level undervoltage protection (V) (format, *0.01%Un)   |
| 0x0645          | UVP3_TIME        | R/W                 | 2                  | 3rd-level undervoltage trip time (T) (format, *0.01sec)    |
| 0x0646          | OVP1_VOLT        | R/W                 | 2                  | 1st-level overvoltage protection (V) (format, *0.01%Un)    |
| 0x0647          | OVP1_TIME        | R/W                 | 2                  | 1st-level overvoltage trip time (T) (format, *0.01sec)     |
| 0x0648          | OVP2_VOLT        | R/W                 | 2                  | 2nd-level overvoltage protection (V) (format, *0.01%Un)    |
| 0x0649          | UVRT_TIME6       | R/W                 | 2                  | 2nd-level overvoltage trip time (T) (format, *0.01sec)     |
| 0x064A          | OVP3_VOLT        | R/W                 | 2                  | 3rd-level overvoltage protection (V) (format, *0.01%Un)    |
| 0x064B          | OVP3_TIME        | R/W                 | 2                  | 3rd-level overvoltage trip time (T) (format, *0.01sec)     |
| 0x064C          | UFP1_FREQ        | R/W                 | 2                  | 1st-level underfrequency threshold (Hz) (format, *0.01%Un) |

| Command<br>Code | Command<br>Name   | Transaction<br>Type | # of data<br>Bytes | Description                                                       |
|-----------------|-------------------|---------------------|--------------------|-------------------------------------------------------------------|
| 0x064D          | UFP1_TIME         | R/W                 | 2                  | 1st-level underfrequency trip time (T) (format, *0.01sec)         |
| 0x064E          | UFP2_FREQ         | R/W                 | 2                  | 2nd-level underfrequency threshold (Hz) (format, *0.01%Un)        |
| 0x064F          | UFP2_TIME         | R/W                 | 2                  | 2nd-level underfrequency trip time (T) (format, *0.01sec)         |
| 0x0650          | UFP3_FREQ         | R/W                 | 2                  | 3rd-level underfrequency threshold (Hz) (format, *0.01%Un)        |
| 0x0651          | UFP3_TIME         | R/W                 | 2                  | 3rd -level underfrequency trip time (T) (format, *0.01sec)        |
| 0x0652          | OFP1_FREQ         | R/W                 | 2                  | 1st-level overfrequency threshold (Hz) (format, *0.01%Un)         |
| 0x0653          | OFP1_TIME         | R/W                 | 2                  | 1st-level overfrequency trip time (T) (format, *0.01sec)          |
| 0x0654          | OFP2_FREQ         | R/W                 | 2                  | 2nd-level overfrequency threshold (Hz) (format, *0.01%Un)         |
| 0x0655          | OFP2_TIME         | R/W                 | 2                  | 2nd-level overfrequency trip time (T) (format, *0.01sec)          |
| 0x0656          | OFP3_FREQ         | R/W                 | 2                  | 3rd-level overfrequency threshold (Hz) (format, *0.01%Un)         |
| 0x0657          | OFP3_TIME         | R/W                 | 2                  | 3rd-level overfrequency trip time (T) (format, *0.01sec)          |
| 0x0658          | OVP10MIN_VOLT     | R/W                 | 2                  | 10-minute average overvoltage protection point (format, *0.01%Un) |
| 0x0659          | ROCOF_SLOPE       | R/W                 | 2                  | Slope setting of ROCOF (format, *0.1Hz/sec)                       |
| 0x065A          | ROCOF_WINDOW_TIME | R/W                 | 2                  | Window time of ROCOF (format, *0.01sec)                           |
| 0x0800          | EVENTLOG_1        | R                   | 6                  | Most recent 1st event log record                                  |
| 0x0801          | EVENTLOG_2        | R                   | 6                  | Most recent 2nd event log record                                  |
| 0x0802          | EVENTLOG_3        | R                   | 6                  | Most recent 3rd event log record                                  |

| Command | Command<br>Name | Transaction<br>Type | # of data<br>Bytes | Description                                       |
|---------|-----------------|---------------------|--------------------|---------------------------------------------------|
| 0x0803  | EVENTLOG_4      | R                   | 6                  | Most recent 4th event log record                  |
| 0x0804  | EVENTLOG_5      | R                   | 6                  | Most recent 5th event log record                  |
| 0x0810  | ENTER_PWD       | W                   | 6                  | Password enter for DSO                            |
| 0x0811  | SET_PWD_KEY     | R/W                 | 2                  | Unlock/lock status reporting and password setting |

#### NOTE:

- 1. Before setting POUT\_USER\_CMD (0x0150), please utilize the SETTING\_UBLOCK command to unlock. Refer to section 6.2.6.2 for detailed instructions.
- 2. Setting commands with \* at the end support the EEP\_OFF and EEP\_CONFIG functions. For detailed information on how to enable them, please refer to SYSTEM\_CONFIG (0x00C2).

#### Data conversion:

Actual Value = Communication Read Value × Factor Value, where the factor value is used for both writing and reading during communication for data conversion. Each command may have a different factor value, which can be found in the command list or retrieved from the SCALING\_FACTOR (0x00C0) command.

Example 1: If the communication read value for the READ\_VOUT command is 0x0960 (hexadecimal), and the factor value for the command is 0.01: Actual Value = 0x0960 (hex) $\rightarrow 2400$  (decimal)  $\times 0.01 = 24V$ .

Example 2: The PF\_SET (0x02EE) command supports both lagging and leading power factor values. The corresponding reactive power will be positive or negative accordingly.

The conversion formula between PF\_SET and PF is:

Q > 0 (lagging):  $PF\_SET = 100 - (PF \times 100)$ 

Q < 0 (leading):  $PF\_SET = -(100 - (PF \times 100))$ 

Example: If PF = lagging 0.9, then PF\_SET =  $10 \rightarrow$  communication setting = 0x000A.

#### ⊚FAULT\_STATUS(0x0040):

| High byte  | Bit 7   | Bit 6  | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0    |
|------------|---------|--------|---------|-------|-------|-------|-------|----------|
| Definition |         |        |         |       |       |       | UTP   | HV_OVP   |
| Low byte   | Bit 7   | Bit 6  | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0    |
| Definition | HI_TEMP | OP_OFF | AC_FAIL | SHORT | OLP   | OVP   | ОТР   | FAN_FAIL |

Low byte:

6

 $Bit\,0 \quad FAN\_FAIL: Fan\,locked\,flag$ 

0 = Fan working normally

1 = Fan locked

Bit 1 OTP: Over temperature protection

0 = Internal temperature normal

1 = Internal temperature too high

Bit 2 OVP: DC over voltage protection

0 = DC voltage normal

1 = DC over voltage protected

Bit 3 OLP: DC over current protection

0 = DC current normal

1 = DC over current protected

Bit 4 SHORT: Short circuit protection

0 = Shorted circuit do not exist

1 = Shorted circuit protected

Bit 5 AC\_FAIL : AC abnormal flag

0 = AC range normal

1 = AC range abnormal

Bit6 OP OFF: DC status

0 = DC turned on

1 = DC turned off

Bit7 HI TEMP: Internal high temperature alarm

0 = Internal temperature normal

1 = Internal temperature high

#### High byte:

Bit 0 HV\_OVP: HV over voltage protection

0 = HV voltage normal

1 = HV over voltage protected

Bit 1 UTP: Under temperature protection

0 = Internal temperature normal

1 = Internal temperature too low

| MFR_ID_B0B5 |        |        |        |        |        |  |
|-------------|--------|--------|--------|--------|--------|--|
| Byte 0      | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 |  |
| 0x4D        | 0x45   | 0x41   | 0x4E   | 0x57   | 0x45   |  |

| MFR_ID_B6B11 |        |        |        |        |        |  |  |
|--------------|--------|--------|--------|--------|--------|--|--|
| Byte 0       | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 |  |  |
| 0x4C         | 0x4C   | 0x20   | 0x20   | 0x20   | 0x20   |  |  |

⊚MFR\_MODEL\_B0B5 (0x0082) is the first 6 codes of the manufacturer's model name (ASCII); MFR\_MODEL\_B6B11 (0x0083) is the last 6 codes of the manufacturer's model 'name (ASCII) EX: Model name is BIC-5K-24→ MFR\_MODEL\_B0B5 is NTN-5K;MFR\_MODEL\_B6B11 is 24

| MFR_MODEL_B0B5 |        |        |        |        |        |  |  |  |
|----------------|--------|--------|--------|--------|--------|--|--|--|
| Byte 0         | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 |  |  |  |
| 0x42           | 0x49   | 0x43   | 0x2D   | 0x35   | 0x4B   |  |  |  |

| MFR_MODEL_B6B11 |        |        |        |         |         |  |  |  |  |
|-----------------|--------|--------|--------|---------|---------|--|--|--|--|
| Byte 6          | Byte 7 | Byte 8 | Byte 9 | Byte 10 | Byte 11 |  |  |  |  |
| 0x2D            | 0x32   | 0x34   | 0x20   | 0x20    | 0x20    |  |  |  |  |

⊚MFR\_REVISION\_B0B5(0x0084) is the firmware revision (hexadecimal). A range of 0x00(R00.0)~0xFE (R25.4) represents the firmware version of an MCU; 0xFF represents no MCU existed

EX: The supply has two MCUs, the firmware version of the MCU number 1 is version R25.4 (0xFE), the MCU number 2 is version R10.5 (0x69)

| Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 |
|--------|--------|--------|--------|--------|--------|
| 0xFE   | 0x69   | 0xFF   | 0xFF   | 0xFF   | 0xFF   |

⊚MFR\_DATE\_B0B5(0x0086) is manufacture date (ASCII) EX: MFR\_DATE\_B0B5 is 180101, meaning 2018/01/01

| Byte 0 | yte 0 Byte 1 |      | Byte 3 | Byte 4 | Byte 5 |  |
|--------|--------------|------|--------|--------|--------|--|
| 0x31   | 0x38         | 0x30 | 0x31   | 0x30   | 0x31   |  |

 $@MFR\_SERIAL\_B0B5 (0x0087) \ and \ MFR\_SERIAL\_B6B11 (0x0088) \ are \ defined \ as \ manufacture \ date \ and \ manufacture \ serial \ number \ (ASCII)$ 

EX: The first unit manufactured on 2018/01/01→MFR\_SERIAL\_B0B5: 180101; MFR\_SERIAL\_B6B11: 000001

| MFR_ID_B0B5 |        |        |        |             |      |  |  |  |  |  |
|-------------|--------|--------|--------|-------------|------|--|--|--|--|--|
| Byte 0      | Byte 1 | Byte 2 | Byte 3 | Byte 4 Byte |      |  |  |  |  |  |
| 0x31        | 0x38   | 0x30   | 0x31   | 0x30        | 0x31 |  |  |  |  |  |

| MFR_ID_B6B11 |        |        |        |        |         |         |
|--------------|--------|--------|--------|--------|---------|---------|
|              | Byte 6 | Byte 7 | Byte 8 | Byte 9 | Byte 10 | Byte 11 |
|              | 0x30   | 0x30   | 0x30   | 0x30   | 0x30    | 0x31    |

#### ⊚CURVE\_CONFIG(0x00B4):

|           | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2  | Bit1  | Bit0  |
|-----------|------|------|------|------|------|-------|-------|-------|
| High byte | -    | -    | -    | -    | -    | FVTOE | CVTOE | ССТОЕ |
| Low byte  | ı    | STGS | -    | -    | ı    | -     | CU    | VS    |

## Low byte:

#### Bit 0:1 CUVS: Charge Curve Selection

00 = Customized Charge Curve (default)

01 = Gel Battery

10 = Flooded Battery

11 = LiFeO4 battery Battery

#### Bit 6 STGS: 2/3 Stage Charge Setting

0 = 3 stage charge (default, CURVE\_VBST and CURVE\_V FLOAT)

1 = 2 stage charge (only CURVE\_VBST)

## High byte:

#### Bit 0 CCTOE: Constant Current Stage Timeout Indication Enable

0 = disabled (default)

1 = enabled

## Bit 1 CVTOE: Constant Voltage Stage Timeout Indication Enable

0 = disabled (default)

1 = enabled

### Bit 2 FVTOE: Float Voltage Stage Timeout Indication Enable

0 = disabled (default)

1 = enabled

# Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0High byteFVTOFCVTOF-----Low byte---FVMCVMCCMFULLM

#### Low byte:

## Bit 0 FULLM: Fully Charged Mode Status

0 = NOT fully charged

1 = fully charged

⊚CHG\_STATUS(0x00B8):

#### Bit 1 CCM: Constant Current Mode Status

0 = the charger NOT in constant current mode

1 = the charger in constant current mode

#### Bit 2 CVM: Constant Voltage Mode Status

0 = the charger NOT in constant voltage mode

1 = the charger in constant voltage mode

#### Bit 3 FVM: Float Mode Status

0 = the charger NOT in float mode

1 = the charger in float mode

## High byte:

6

## Bit 5 CCTOF: Time Out Flag of Constant Current Mode

0 = NO time out in constant current mode

1 = constant current mode timed out

#### Bit 6 CVTOF: Time Out Flag of Constant Voltage Mode

0 = NO time out in constant voltage mode

1 = constant voltage mode timed out

## Bit 7 FVTOF: Time Out Flag of Float Voltage Mode

0 = NO time out in float mode

1 = float mode timed out

#### ⊚SCALING\_FACTOR(0x00C0):

| Byte 5     | Bit 7 | Bit 6      | Bit 5       | Bit 4 | Bit 3 | Bit 2        | Bit 1       | Bit 0 |
|------------|-------|------------|-------------|-------|-------|--------------|-------------|-------|
| Definition |       | _          | -           |       |       | _            | -           |       |
| Byte 4     | Bit 7 | Bit 6      | Bit 5       | Bit 4 | Bit 3 | Bit 2        | Bit 1       | Bit 0 |
| Definition |       | _          | -           |       |       | Frequen      | cy Factor   |       |
| Byte 3     | Bit 7 | Bit 6      | Bit 5       | Bit 4 | Bit 3 | Bit 2        | Bit 1       | Bit 0 |
| Definition |       | Watt I     | Factor      |       |       | IIN Factor / | IAC Facto   | r     |
| Byte 2     | Bit 7 | Bit 6      | Bit 5       | Bit 4 | Bit 3 | Bit 2        | Bit 1       | Bit 0 |
| Definition | С     | URVE_TIM   | EOUT Facto  | or    | Т     | EMPERATU     | JRE_1 Facto | or    |
| Byte 1     | Bit 7 | Bit 6      | Bit 5       | Bit 4 | Bit 3 | Bit 2        | Bit 1       | Bit 0 |
| Definition |       | FAN_SPE    | ED Factor   |       | V     | /IN Factor / | VAC Facto   | r     |
| Byte 0     | Bit 7 | Bit 6      | Bit 5       | Bit 4 | Bit 3 | Bit 2        | Bit 1       | Bit 0 |
| Definition | IC    | OUT Factor | / IDC Facto | or    | V     | OUT Factor   | / VDC Fact  | or    |
|            |       |            |             |       |       |              |             |       |

#### byte 0:

## Bit 0:3 VOUT Factor/VDC Factor: The factor value for DC voltagerelated commands, such as VOUT\_SET

0x0 = DC voltage relevant commands not supported

0x4 = 0.001

0x5 = 0.01

0x6 = 0.1

0x7 = 1.0

0x8 = 10

0x9 = 100

# Bit 4:7 IOUT Factor/IDC Factor: The factor value for DC current-related commands, such as READ\_IOUT

0x0=DC current relevant commands not supported

0x4 = 0.001

0x5 = 0.01

0x6 = 0.1

0x7 = 1.0

0x8 = 10

0x9 = 100

| byte 1 :  |                                                                                                                                                                                                                                               | byte 3 :                     |                                                                                                                                                                                                                                  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 0:3   | VIN Factor/VAC Factor : The factor value of READ_VIN $0x0=AC$ voltage relevant commands not supported $0x1\sim0x3=N$ ot in use, reserved (default 0) $0x4=0.001$ $0x5=0.01$ $0x6=0.1$ $0x7=1.0$ $0x8=10$ $0x9=100$                            | Bit 0:3                      | IIN Factor/IAC Factor: The Factor of input current/AC current $0x0=AC$ input current relevant commands not supported $0x1\sim0x3=Not$ in use, reserved (default 0) $0x4=0.001$ $0x5=0.01$ $0x6=0.1$ $0x7=1.0$ $0x8=10$ $0x9=100$ |
| Bit 4 : 7 | FAN_SPEED Factor: The factor value of READ_FAN_SPEED_1/2 $0x0$ = Fan speed relevant commands not supported $0x1 \sim 0x3$ = Not in use, reserved (default 0) $0x4$ = 0.001 $0x5$ = 0.01 $0x6$ = 0.1 $0x7$ = 1.0 $0x8$ = 10 $0x9$ = 100        | Bit 4:7                      | Watt Factor: The Factor of output AC wattage (Power/Reactive/VA)  0x0=AC wattage relevant commands not supported 0x1~0x3=Not in use, reserved (default 0) 0x4=0.001 0x5=0.01 0x6=0.1                                             |
| byte 2 :  |                                                                                                                                                                                                                                               |                              | 0x7=1.0                                                                                                                                                                                                                          |
| Bit 0:3   | TEMPERATURE_1 Factor: The factor value of READ_TEMPERATURE_1 $0x0$ =Internal temperature relevant commands not supported $0x1 \sim 0x3$ =Not in use, reserved (default 0) $0x4$ =0.001 $0x5$ =0.01 $0x6$ =0.1 $0x7$ =1.0 $0x8$ =10 $0x9$ =100 | byte 4 :<br><b>Bit 0 : 3</b> | 0x8=10 0x9=100  Frequency Factor: The Factor of Frequency 0x0=Frequency relevant commands not supported 0x1~0x3=Not in use, reserved (default 0) 0x4=0.001 0x5=0.01 0x6=0.1                                                      |
| Bit 4 : 7 | CURVE_TIMEOUT Factor: The Factor of CC/CV/Float timeout $0x0$ = CURVE_TIMEOUT relevant commands not supported $0x1 \sim 0x3$ = Not in use, reserved (default 0) $0x4$ = 0.001 $0x5$ = 0.01 $0x6$ = 0.1 $0x7$ = 1.0 $0x8$ = 10 $0x9$ = 100     |                              | 0x0 = 0.1 $0x7 = 1.0$ $0x8 = 10$ $0x9 = 100$                                                                                                                                                                                     |

#### ⊚SYSTEM\_STATUS(0x00C1):

| High byte  | Bit 7 | Bit 6 | Bit 5             | Bit 4 | Bit 3 | Bit 2 | Bit1  | Bit 0 |
|------------|-------|-------|-------------------|-------|-------|-------|-------|-------|
| Definition |       |       |                   |       |       |       |       |       |
| Low byte   | Bit 7 | Bit 6 | Bit 5             | Bit 4 | Bit 3 | Bit 2 | Bit1  | Bit 0 |
| Definition |       | EEPER | INITIAL<br>_STATE |       |       | DA_OK | DC_OK | M/S   |

## Low byte:

#### Bit 0 M/S: Parallel mode status

0 = Current device is Slave

1 = Current device is Master

#### Bit 1 DC\_OK: Secondary DD output voltage status

0 = Secondary DD output voltage status TOO LOW

1 = Secondary DD output voltage status NORMAL

## Bit 2 DA\_OK: Primary DA status

0 = Primary DA OFF or abnormal

1=Primary DA ON normally

## Bit 5 INITIAL\_STATE : Device initialized status

0 = In initialization status

1 = NOT in initialization status

#### Bit 6 EEPER: EEPROM data access error

0 = FFPROM data access normal

1 = EEPROM data access error

When an EEPROM data access error occurs, the supply shuts down and then entering protection mode with the LED indicator off. It only can be recovered after the EEPROM error condition is resolved.

#### ⊚SYSTEM\_CONFIG(0x00C2):

| High byte  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit1    | Bit 0    |
|------------|-------|-------|-------|-------|-------|---------|---------|----------|
| Definition |       |       |       |       |       | EEP_OFF | EEP_C   | ONFIG    |
| Low byte   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit1    | Bit 0    |
| Definition |       |       |       |       |       | OPERATI | ON_INIT | CAN_CTRL |

#### Low byte:

#### Bit 0 CAN\_CTRL: CANBus communication control status

0 = The output voltage/current defined by control over SVR

1 = The output voltage, current, ON/OFF control defined by control over CAN bus (VOUT\_SET, IOUT\_SET, OPERATION)

#### Bit 1:2 OPERATION\_INIT: Pre-set value of power on operation command

0b00 = Power OFF, pre-set 0x00(OFF)

0b01 = Power ON, pre-set0x01(ON)

0b10 = Pre-set is previous set value

0b11 = not used, reserved

### High Byte

## Bit 0:1 Bit 0:1 EEP\_CONFIG: EEPROM Configuration

00: Immediate. Changes to parameters are written to EEPROM immediately (factory default)

01: 1 minute delay. Write changes to EEPROM if all parameters remain unchanged for 1 minute

10: 10 minute delay. Write changes to EEPROM if all parameters remain unchanged for 10 minutes

11: Reserved

## Bit 2 EEP\_OFF: EEPROM storage function ON/OFF

0: Enable. Parameters to be saved into EEPROM (factory default)

1: Disable, Parameters NOT to be saved into EEPROM

#### ⊚INV\_OPERATION(0x0100):

| High byte  | Bit 7 | Bit 6 | Bit 5 | Bit 4     | Bit 3   | Bit 2  | Bit1 | Bit 0 |
|------------|-------|-------|-------|-----------|---------|--------|------|-------|
| Definition |       |       |       |           |         |        |      |       |
| Low byte   | Bit 7 | Bit 6 | Bit 5 | Bit 4     | Bit 3   | Bit 2  | Bit1 | Bit 0 |
| Definition |       |       |       | CHG_FIRST | GRID_EN | CHG_EN |      |       |

## Low byte:

#### Bit 2 CHG\_EN: Charger Mode enabling

0 = Charger Mode disabled (Default)

1 = Charger Mode enabled

#### Bit 3 GRID\_EN: 50549 Mode enabling

0 = 50549 Mode disabled (Default)

1 = 50549 Mode enabled

#### Bit 4 CHG\_FIRST: Charger first or not in 50549 + Charger Mode

0 = Grid first (Default)

1 = Charging first

NOTE: BIC Mode is enabled when both CHG\_EN and GRID\_EN bits are logic 0.

#### ⊚INV\_STATUS(0x011D):

|           | Bit 7     | Bit 6       | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit1 | Bit 0 |
|-----------|-----------|-------------|-------|-------|--------|--------|------|-------|
| High byte |           |             |       |       |        |        |      |       |
| Low byte  | Bat_H_ALM | Bat_Low_ALM |       |       | CHG_ON | UTI_OK |      |       |

#### Low byte:

6

## Bit 2 UTI\_OK : Utility Power Exist

0 = Utility power failure

1 = Utility Power normal

## Bit 3 CHG\_ON: Charger status

0 = Charger OFF

1 = Charger ON

## Bit6 Bat\_Low\_ALM: Battery low alarm

0 = Batter y low alarm is NOT triggered

1 = Battery low alarm is triggered

## Bit7 BAT\_H\_ALM: Battery high alarm

0 = Battery low alarm is NOT triggered

1 = Battery low alarm is triggered

#### ⊚BIDIR\_CONFIG(0x0143):

| High byte  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit1 | Bit 0 |
|------------|-------|-------|-------|-------|-------|-------|------|-------|
| Definition |       |       |       |       |       |       |      |       |
| Low byte   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit1 | Bit 0 |
| Definition |       |       |       |       |       |       |      | MODE  |

#### Low byte:

## Bit 0 MODE: Bidirectional mode configuration

0 = Bi-direction auto-detect mode. DIR\_CTRL and C/D control (analogy) UN-controllable

1 = Bi-direction battery mode. DIR\_CTRL and C/D control (analogy) controllable

#### $\bigcirc$ GRID\_ALARM(0x0205):

| Bit 7   | D1: 6             |                                              |                                                                      |                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-------------------|----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.07    | Bit 6             | Bit 5                                        | Bit 4                                                                | Bit 3                                                                                             | Bit 2                                                                                                                    | Bit 1                                                                                                                                                                                                                                                                                                                                        | Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                   |                                              |                                                                      |                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bit 7   | Bit 6             | Bit 5                                        | Bit 4                                                                | Bit 3                                                                                             | Bit 2                                                                                                                    | Bit 1                                                                                                                                                                                                                                                                                                                                        | Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                   |                                              |                                                                      |                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bit 7   | Bit 6             | Bit 5                                        | Bit 4                                                                | Bit 3                                                                                             | Bit 2                                                                                                                    | Bit 1                                                                                                                                                                                                                                                                                                                                        | Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | COMM_ERR          | EEPER                                        | HW_ERR                                                               | FAN_LOCK                                                                                          | UTP                                                                                                                      | ОТР                                                                                                                                                                                                                                                                                                                                          | HV_OVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bit 7   | Bit 6             | Bit 5                                        | Bit 4                                                                | Bit 3                                                                                             | Bit 2                                                                                                                    | Bit 1                                                                                                                                                                                                                                                                                                                                        | Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BAT_UVP | BAT_OVP           |                                              | ROCOF                                                                | GRID_UFP                                                                                          | GRID_OFP                                                                                                                 | GRID_UVP                                                                                                                                                                                                                                                                                                                                     | GRID_OVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | Bit 7 Bit 7 Bit 7 | Bit 7 Bit 6 Bit 7 Bit 6 COMM_ERR Bit 7 Bit 6 | Bit 7 Bit 6 Bit 5 Bit 7 Bit 6 Bit 5 COMM_ERR EEPER Bit 7 Bit 6 Bit 5 | Bit 7 Bit 6 Bit 5 Bit 4   Bit 7 Bit 6 Bit 5 Bit 4  COMM_ERR EEPER HW_ERR  Bit 7 Bit 6 Bit 5 Bit 4 | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 COMM_ERR EEPER HW_ERR FAN_LOCK Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 | Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2                  Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2            COMM_ERR         EEPER         HW_ERR         FAN_LOCK         UTP           Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2 | Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1           Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1           Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1            COMM_ERR         EEPER         HW_ERR         FAN_LOCK         UTP         OTP           Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1 |

#### Byte 0

## Bit 0 GRID\_OVP : Overvoltage protection in grid-connected mode

0 = AC voltage normal

1 = AC over-voltage protected

## Bit 1 GRID\_UVP: Undervoltage protection in grid-connected mode

0 = AC voltage normal

1 = AC under-voltage protected

### Bit 2 GRID\_OFP: Overfrequency protection in grid-connected mode

0 = AC frequency normal

1 = AC over-frequency protected

#### Bit 3 GRID\_UFP: Underfrequency protection in grid-connected mode

0 = AC frequency normal

1 = AC under-frequency protected

## ROCOF: ROCOF protection in grid-connected mode Bit 4 0 = ROCOF normal 1 = ROCOF abnormal protected Bit 6 BAT\_OVP: Battery overvoltage protection 0 = battery voltage normal 1 = Battery overvoltage protected BAT\_UVP: Battery undervoltage protection Bit 7 0 = battery voltage normal 1 = Battery undervoltage protected Byte 1 HV\_OVP: HV over voltage protection Bit 0 0 = HV voltage normal1 = HV over voltage protected OTP: Over temperature protection Bit 1 0 = Internal temperature normal 1 = Internal temperature too high UTP: Under temperature protection Bit 2 0 = Internal temperature normal 1 = Internal temperature too low FAN\_LOCK: Fan locked flag Bit 3 0 = Fan working normally 1 = Fan locked Bit 4 HW ERROR: Hardware error 0 = hardware normal1 = hardware abnormal protected Bit 5 EEPER: EEPROM data access error 0 = EEPROM data access normal 1 = EEPROM data access error

#### Bit 6 COMM\_ERR: Internal commumcaiton access error

0 = Internal commumcaiton access normal

1 = Internal commumcaiton access error

#### ⊚THROT\_SRC(0x0248) :

| Byte 3     | Bit 7 | Bit 6   | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------------|-------|---------|--------|-------|-------|-------|-------|-------|
| Definition |       |         |        |       |       |       |       |       |
| Byte 1     | Bit 7 | Bit 6   | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Definition |       |         |        |       |       |       |       |       |
| Byte 1     | Bit 7 | Bit 6   | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Definition |       | PF_P    | PF_SET | Q_P   | Q_U   | Q_SET | P_U   | P_SET |
| Byte 0     | Bit 7 | Bit 6   | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Definition |       | DERATED | LFSMU  | LFSMO |       |       | UVRT  | OVRT  |

#### Byte 0

#### Bit 0 OVRT: OVRT

0 = the output control is not limited by OVRT 1 = the output control is limited by OVRT

#### Bit 1 UVRT: UVRT

0 = the output control is not limited by UVRT 1 = the output control is limited by UVRT

#### Bit 4 LFSMO: LFSM-O

0 = the output control is not limited by LFSM-O 1 = the output control is limited by LFSM-O

#### Bit 5 LFSMU: LFSM-U

0 = the output control is not limited by LFSM-U 1 = the output control is limited by LFSM-U

#### Bit 6 DERATED: DERATED

0 = the output control is not limited by DERATED1 = the output control is limited by DERATED

#### Byte 1

## Bit 0 P\_SET: Maximum active power output setting

0 =the output control is not limited by P\_SET

1 = the output control is limited by P\_SET

#### Bit 1 P\_U: P(U) Curve

0 = the output control is not limited by P(U)

1 = the output control is limited by P(U)

#### Bit 2 Q\_SET: Maximum reactive

0 = the output control is not limited by Q\_SET

1 = the output control is limited by Q\_SET

#### Bit 3 Q\_U: Q(U) curve

0 =the output control is not limited by Q(U)

1 =the output control is limited by Q(U)

#### Bit 4 Q\_P: Q(P) curve

0 =the output control is not limited by Q(P)

1 = the output control is limited by Q(P)

## Bit 5 PF\_SET: cosφ set point

0 = the output control is not limited by PF\_SET

1 = the output control is limited by PF\_SET

#### Bit 6 PF\_P: cosφ(P) curve

0 = the output control is not limited by PF\_P

1 = the output control is limited by PF\_P

#### ⊚SAFTY\_FUNC\_CONFIG(0x02E4):

| High byte  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1    | Bit 0      |
|------------|-------|-------|-------|-------|-------|-------|----------|------------|
| Definition |       |       |       |       |       |       | ANTI_ISL | NS_PROTECT |
| Low byte   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1    | Bit 0      |
| Definition |       | ROCOF | LFSMU | LFSMO |       |       | OVRT     | UVRT       |

#### Low byte:

Bit 0 UVRT : UVRT enabling

0 = disabled

1 = enabled

Bit 1 OVRT : OVRT enabling

0 = disabled

1 = enabled

Bit 4 LFSMO: LFSM-O enabling

0 = disabled

1 = enabled

Bit 5 LFSMU: LFSM-U enabling

0 = disabled

1 = enabled

Bit 6 RPCPF : ROCOF protection enabling

0 = disabled

1 = enabled

## High byte:

Bit 0 NS\_PROTECT : NS protection enabling

0 = disabled

1 = enabled

Bit 1 ANTI\_ISL: Active anti-islanding enabling (SFS)

0 = disabled

1 = enabled

#### ⊚CTRL\_MODE(0x02E8):

| High byte  | Bit 7       | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0            |
|------------|-------------|-------|-------|-------|-------|-------|-------|------------------|
| Definition |             |       |       |       |       |       |       | CTRL_STORAGE_CFG |
| Low byte   | Bit 7       | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0            |
| Definition | Q_CTRL_MODE |       |       |       |       |       | PU_EN |                  |

#### Low byte:

Bit 0 PU\_EN: P(U) enabling

0 = disabled

1 = enabled

Bit 4-7 Q\_CTRL\_MODE : Reactive power control mode setting

0000 = reactive power control mode dialbed

0001 = Q setpint mode

0010 = Q(U) mode

0011 = Q(P) mode

 $0100 = \cos \varphi \text{ setpint}$ 

 $0101 = Cos \varphi(P) \mod e$ 

## High byte:

Bit 0 CTRL\_STORAGE\_CFG : EEPROM stogarge configriaton for GRID\_TIE\_REMOTE / P\_SET / Q\_SET / PF\_SET

0 = Do not store command parameters

1 = Store command parameters

(GRID\_TIE\_REMOTE / P\_SET / Q\_SET / PF\_SET) into the EEPROM

## 6.1.4 CAN Bus Communication Examples

The following provides examples of command sending and data reading for the CAN bus protocol.

#### 6.1.4.1 Sending command

For the address "00" unit, the master set CAN\_CTRL bit in the SYSTEM\_CONFIG (0x00C2) command to "logic 1".

| CANID   | DLC(data length) | Command Code | Parameter |
|---------|------------------|--------------|-----------|
| 0xC0300 | 0x04             | 0xC200       | 0x0300    |

Command code: 0x00C2 (SYSTEM\_CONFIG)  $\rightarrow 0xC2$  (Lo) + 0x00 (Hi)

Data: Data: Low bytes: changes to  $0b0110 \rightarrow 0x03$ ;

High bytes: remains at  $0b0000 \rightarrow 0x00$ 

## Low byte:

Bit 0 CAN CTRL: CANBus communication control status

0 = The output voltage/current defined by control over SVR

1 = The output voltage, current, ON/OFF control defined by control over CAN bus (VOUT\_SET, IOUT\_SET, OPERATION)

6

## Bit 1:2 OPERATION\_INIT: Pre-set value of power on operation command

0b00 = Power OFF, pre-set 0x00(OFF)

0b01 = Power ON, pre-set0x01(ON)

0b10 = Pre-set is previous set value

0b11 = not used, reserved

#### 6.1.4.2 Reading data or status

The master reads the READ\_VIN command from the unit with address "01".

| CANID   | DLC(data length) | Command Code |
|---------|------------------|--------------|
| 0xC0300 | 0x02             | 0x5000       |

Command code: 0x0050 (READ\_VIN)  $\rightarrow 0x50$  (Lo) + 0x00 (Hi)

#### The unit with address "01" returns data below:

| CANID   | DLC(data length) | Command Code | Command Code |
|---------|------------------|--------------|--------------|
| 0xC0300 | 0x04             | 0x5000       | 0xFC08       |

Parameters:  $0xFC (Lo) + 0x08(Hi) \rightarrow 0x08FC \rightarrow 2300$  $\rightarrow 2300 \times 0.1(F) = 230Vac$ 

NOTE: Conversion factor for READ\_VIN is 0.1.

#### 6.1.4.3 POUT\_USER\_CMD(0x0150) Settgins for User

To avoid improper output power configurations in 50549 Mode, the POUT\_USER\_CMD (0x0150) register requires a different setup process. It must be unlocked via the SETTING\_UNLOCK (0x00CF) command prior to modification.

## Unlock password SETTING UNLOCK(0x00CF)

| CANID     | DLC(data length) | Command Code | Data   |
|-----------|------------------|--------------|--------|
| 0x00C0300 | 0x04             | 0xCF00       | 0x574D |

## Set POUT\_USER\_CMD POUT USER CMD(0x0150)

| CANID     | DLC(data length) | Command Code | Data   |
|-----------|------------------|--------------|--------|
| 0x00C0300 | 0x04             | 0x5001       | 0x8813 |

#### 6.1.4.4 Password Seting for the Grid Connection Parameters for DSO

According to the EN 50549 standard, grid-connection parameters are accessible only to the DSO and must be managed under an authorization control mechanism. Registers ranging from 0x0202 (AC\_TYPE) to 0x065A (ROCOF\_WINDOW\_TIME) can only be configured after the device is unlocked.

The default password is "000000" (string) or the unlocked state. When the password remains at its default value, all grid-connection parameters can be modified freely without entering the password. The current lock status can be read from SET PWD KEY (0x0823).

| Read value from SET_PWD_KEY(0x0823) | Status                                                     |
|-------------------------------------|------------------------------------------------------------|
| 0x0000                              | Unlocked or no password                                    |
| 0x00FE                              | Locked or incorrect password                               |
| 0x0055                              | Non-default password.<br>A password for unlock is required |

#### Password Unlock Procedure

The following example illustrates how to unlock the device when the password is set to 765432(string).

## ① Enter the password to ENTER\_PWD (0x0820)

| CANID     | DLC(data length) | Command Code | Data           |
|-----------|------------------|--------------|----------------|
| 0x00C0300 | 0x04             | 0x1008       | 0x373635343332 |

## ② Read the SET\_PWD\_KEY (0x0823) status

| CANID     | DLC(data length) | Command Code |
|-----------|------------------|--------------|
| 0x00C0300 | 0x2              | 0x1108       |

If the response returns 0x0000, it indicates that the password has been successfully entered, and the grid connection parameters can now be modified

| CANID     | DLC(data length) | Command Code | Data   |
|-----------|------------------|--------------|--------|
| 0x00C0200 | 0x04             | 0x1108       | 0x0000 |

## 3 Lock the device manually (or wait 5 minutes for automatic locking)

| CANID     | DLC(data length) | Command Code | Data   |
|-----------|------------------|--------------|--------|
| 0x00C0300 | 0x04             | 0x1108       | 0x5500 |

NOTE: When the BIC-5K is in the unlocked state, receiving any new grid-connection parameter change will reset the 5-minute auto-lock timer. In other words, the device will automatically lock 5 minutes after the most recent parameter change.

## • Password Change Procedure

To change the password, follow the procedure below. Before performing a password change, ensure that the device is in the unlocked state — that is, read value of SET\_PWD\_KEY(0x0823) returns 0x0000. The password can only be changed in this state.

① Enable password change mode. Write 0x00AA to SET\_PWD\_KEY (0x0823) to activate the password change procedure.

| CANID     | DLC(data length) | Command Code | Data   |
|-----------|------------------|--------------|--------|
| 0x00C0300 | 0x04             | 0x1108       | 0xAA00 |

2 Enter the new password to <code>ENTER\_PWD</code> (0x0820).

For example, to set a new password of 765432(string).

| CANID     | DLC(data length) | Command Code | Data           |
|-----------|------------------|--------------|----------------|
| 0x00C0300 | 0x04             | 0x1008       | 0x373635343332 |

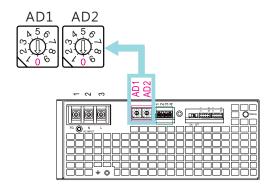
## ③ Input the password again

| CANID     | DLC(data length) | Command Code | Data           |
|-----------|------------------|--------------|----------------|
| 0x00C0300 | 0x04             | 0x1008       | 0x373635343332 |

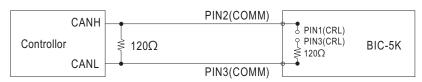
④ Verify password change result. Read SET\_PWD\_KEY (0x0823) to confirm whether the password has been successfully updated

| CANID     | DLC(data length) | Command Code |
|-----------|------------------|--------------|
| 0x00C0300 | 0x2              | 0x2308       |

If the response returns 0x00FF, it indicates that the password change was successful.


| CANID     | DLC(data length) | Command Code | Data   |
|-----------|------------------|--------------|--------|
| 0x00C0200 | 0x04             | 0x2308       | 0xFF00 |

#### 6.1.5 CAN Bus Practical Operation


#### **BIC Mode**

The following steps will describe how to configure the BIC-5K-48 in communication mode and set the voltage/current parameters as follows: VOUT\_SET: 60V, IOUT\_SET: 70A and IOUT\_SET\_REV: -70A.

1.Set the address of the inverter to "0"



- 2. Connect the CANH/CANL pins of the master to the corresponding CANH(PIN2)/CANL(PIN3) pins of the COMM connector on the device. It is recommended to establish a common ground for the communication system to increases its communication reliability by using GND-AUX (PIN1) of COMM.
- X Set baud rate: 250kbps, type: extended
- $\times$  Adding a 120 $\Omega$  termination resistor to both the controller and deive's end can increase communication stability. If the unit is a terminal, it is recommended to connect a termination resistor, that is short circuit PIN1 and PIN 3 of CRL.



3. Configure communication settings after power on.

| CANID   | DLC(data length) | Command Code | Parameter |
|---------|------------------|--------------|-----------|
| 0xC0300 | 0x04             | 0xC200       | 0x0300    |

Command code: 0x00C2 (SYSTEM\_CONFIG)

Data: 03(Lo) + 00(Hi). Please refer to definition of CURVE\_CONFIG for detailed information

#### 4. Set VOUT\_SET to 60V

| CAN ID  | DLC(data length) | Command Code | Parameter |
|---------|------------------|--------------|-----------|
| 0xC0300 | 0x04             | 0x2000       | 0x7017    |

Command code :  $0x0020(VOUT\_SET) \rightarrow 0x20 (Lo) + 0x00(Hi)$ 

Data:  $60V \rightarrow 6000 \rightarrow 0x1770 \rightarrow 0x70 \text{ (Lo)} + 0x17 \text{ (Hi)}$ 

NOTE: Conversion factor for VOUT\_SET is  $0.01 \cdot so \frac{60V}{F=0.01} = 6000 \circ$ 

#### 5. Set IOUT\_SET to 70A

| CAN ID  | DLC(data length) | Command Code | Parameter |
|---------|------------------|--------------|-----------|
| 0xC0300 | 0x04             | 0x3000       | 0x581B    |

Command code :  $0x0030(IOUT\_SET) \rightarrow 0x30 (Lo) + 0x 00(Hi)$ 

Data:  $70A \rightarrow 7000 \rightarrow 0x1B58 \rightarrow 0x58 (Lo) + 0x1B (Hi)$ 

NOTE: Conversion factor for IOUT\_SET is  $0.01 \cdot \text{so } \frac{70\text{V}}{\text{F}=0.01} = 7000 \circ$ 

#### 6. Set IOUT\_SET\_REV to 70A

| CAN ID  | DLC(data length) | Command Code | Parameter |
|---------|------------------|--------------|-----------|
| 0xC0300 | 0x04             | 0x4201       | 0x581B    |

Command code:  $0x0142(IOUT\_SET\_REV) \rightarrow 0x42(Lo) + 0x01(Hi)$ 

 $Data: 70A \rightarrow 7000 \rightarrow 0x1B58 \rightarrow 0x58 \text{ (Lo)} + 0x1B \text{ (Hi)}$ 

NOTE: Conversion factor for IOUT\_SET\_REV is  $0.01 \cdot \text{so} \frac{70\text{V}}{\text{F}=0.01} = 7000 \circ$ 

7. Before connecting to the batteries or loads, it is recommended to review all of the settings and parameters using the appropriate commands. In the event that they do not meet your requirements, you may rewrite them as needed

EX: Read IOUT\_SET to check whether current level for AC to DC was set to a proper level.

## Read IOUT\_SET

| CANID   | DLC(data length) | Command Code |
|---------|------------------|--------------|
| 0xC0300 | 0x04             | 0x3000       |

The unit returns data below:

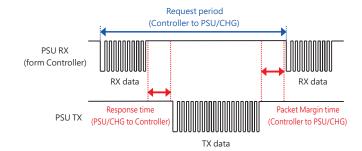
| CANID   | DLC(data length) | Command Code | Parameter |
|---------|------------------|--------------|-----------|
| 0xC0300 | 0x04             | 0x3000       | 0x581B    |

Parameters :  $0x58(Lo) + 0x1B(Hi) \rightarrow 0x1B58 \rightarrow 7000 \rightarrow 7000x0.01(F) \rightarrow 70A$ 

8. Finally, short circuit Remote ON\_OFF (PIN3) and +5V\_AUX2 (PIN1) pins of the PAR1/ PAR2 connector on the device to remote on it to charge the batteries or provide energy to the loads.



#### 6.2 Modbus Protocol


The device supports Modbus RTU with the master-salve principle. Users are able to read and write parameters of the device through the protocol, including remote ON/OFF, AC voltage/frequency setting, etc. During data transfer, please follow the principle of first sending the Hi byte and then the Lo byte except Error Check (CRC16 checksum).

6

| Control      | Setting |
|--------------|---------|
| Baud Rate    | 115200  |
| Data Bits    | 8       |
| Stop Bit     | 1       |
| Parity       | None    |
| Flow Control | None    |

## 6.2.1 Communication Timing

Min. request period (Controller to PSU/CHG): 50mSec ° Max. response time (PSU/CHG to Controller): 12.5mSec ° Min. packet margin time (Controller to PSU/CHG): 12.5mSec °



#### 6.2.2 Modbus Frame Encapsulation

Modbus RTU consists of Additional Address, Function Code, Data and Error Check.

| Additional Address | Function Code | Data    | Error Check |
|--------------------|---------------|---------|-------------|
| 1 byte             | 1 byte        | N bytes | 2 bytes     |

Additional address (1byte): Defines inverter's slave ID.

Function code (1byte): The function code is used to tell the slave what kind of action to perform.

Data (N bytes): For data exchange, contents and data length are dependent on different function codes.

Error Check (2bytes): Utilizes CRC-16.

#### 6.2.3 Additional Address Definition

Additional address is the slave ID of the device. Each BIC-5K unit should have their unique and own device address to communicate over the Bus

| Slave ID  | Description                                                                                                                   |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0xC0 + XX | XX means device address (assigned by AD1 and AD2). For example: Address is set at 63, meaning Slave ID = $0xC0 + 0x3F = 0xFF$ |  |  |
| 0x00      | Broadcast                                                                                                                     |  |  |

Note: XX means the address of the BIC-5K. Please refer to 4.7 Communication Address/ID Assignment for detailed.

## 6.2.4 Function Code Description

The main purpose of the function codes is to tell the slave what kind of action to perform. For example: Function code 03 will query the slave to read holding registers and respond with the master their contents.

| Function Code          |      |  |
|------------------------|------|--|
| Read Holding Register  | 0x03 |  |
| Read Input Register    | 0x04 |  |
| Preset Single Register | 0x06 |  |

#### 6.2.5 Data Field and Command Lists

Data field provides additional information by the slave to complete the action specified by the function code (FC) in a request. The data field typically includes register addresses, count values, and written data. There are several forms according to the function codes.

FC = 03/04

| Starting Address | Quantity of (Input) Registers |  |  |
|------------------|-------------------------------|--|--|
| 2 Bytes          | 2 Bytes                       |  |  |

FC = 06

| Register Address | Register Value |  |
|------------------|----------------|--|
| 2 Bytes          | 2 Bytes        |  |

ORANGE: BIC Mode Dedicated Commands
BLUE: 50549 Mode Dedicated Commands
GREEN: Charger Mode Dedicated Commands

| Command<br>Code | Command<br>Name        | Function code | # of data<br>Bytes | Description                                           |
|-----------------|------------------------|---------------|--------------------|-------------------------------------------------------|
| 0x0000          | OPERATION              | 0x03,0x06     | 2                  | 01:ON/00:OFF                                          |
| 0x0020          | VOUT_SET*              | 0x03,0x06     | 2                  | Charge voltage setting (Factor = 0.01)                |
| 0x0030          | IOUT_SET*              | 0x03,0x06     | 2                  | Charge current setting (Factor = 0.01)                |
| 0x0040          | FAULT_STATUS           | 0x03          | 2                  | Summary status reporting                              |
| 0x0050          | READ_VIN               | 0x04          | 2                  | Single-phase input voltage (Bypass) (Factor = 0.1)    |
| 0x0053          | READ_IIN               | 0x04          | 2                  | Single-phase input current(Bypass) (Factor = 0.1)     |
| 0x0056          | READ_FREQ              | 0x04          | 2                  | Single-phase input frequency (Bypass) (Factor = 0.01) |
| 0x0060          | READ_VOUT              | 0x04          | 2                  | DC voltage reading value (Factor = 0.01)              |
| 0x0061          | READ_IOUT              | 0x04          | 2                  | DC current reading value (Factor = 0.01)              |
| 0x0062          | READ_<br>TEMPERATURE_1 | 0x04          | 2                  | Internal ambient temperature (Factor = 0.1)           |
| 0x0070          | READ_FAN_SPEED_1       | 0x04          | 2                  | Fan speed 1 reading value (Factor = 1)                |
| 0x0071          | READ_FAN_SPEED_2       | 0x04          | 2                  | Fan speed 2 reading value<br>(Factor值 =1)             |
| 0x0080          | MFR_ID_B0B5            | 0x03          | 6                  | Manufacturer's name                                   |
| 0x0083          | MFR_ID_B6B11           | 0x03          | 6                  | Manufacturer's name                                   |
| 0x0086          | MFR_MODEL_B0B5         | 0x03          | 6                  | Manufacturer's model name                             |
| 0x0089          | MFR_MODEL_B6B11        | 0x03          | 6                  | Manufacturer's model name                             |

| Command | Command           | Function   | # of data | Description                                                                 |
|---------|-------------------|------------|-----------|-----------------------------------------------------------------------------|
| Code    | Name              | code       | Bytes     | Description                                                                 |
| 0x008C  | MFR_REVISION_B0B5 | 0x03       | 6         | Firmware revision                                                           |
| 0x008F  | MFR_LOCATION_B0B2 | 0x03       | 4         | Manufacturer's factory location                                             |
| 0x0091  | MFR_DATE_B0B5     | 0x03       | 6         | Manufacturer's date                                                         |
| 0x0094  | MFR_SERIAL_B0B5   | 0x03       | 6         | Product serial number                                                       |
| 0x0097  | MFR_SERIAL_B6B11  | 0x03       | 6         | Product serial number                                                       |
| 0x00B0  | CURVE_CC*         | 0x03, 0x06 | 2         | Constant current setting of charge curve (Factor = 0.01)                    |
| 0x00B1  | CURVE_CV*         | 0x03, 0x06 | 2         | Constant voltage setting of charge curve $(Factor = 0.01)$                  |
| 0x00B2  | CURVE_FV*         | 0x03, 0x06 | 2         | Floating voltage setting of charge curve $(Factor = 0.01)$                  |
| 0x00B3  | CURVE_TC*         | 0x03, 0x06 | 2         | Taper current setting of charge curve (Factor = 0.01)                       |
| 0x00B4  | CURVE_CONFIG      | 0x03, 0x06 | 2         | Configuration setting of charging curve                                     |
| 0x00B5  | CURVE_CC_TIMEOUT  | 0x03, 0x06 | 2         | ${\tt CC}$ stage timeout setting value of charging curve $({\tt Factor}=1)$ |
| 0x00B6  | CURVE_CV_TIMEOUT  | 0x03, 0x06 | 2         | CV stage timeout setting value of charging curve $(Factor = 1)$             |
| 0x00B7  | CURVE_FV_TIMEOUT  | 0x03, 0x06 | 2         | FV stage timeout setting value of charging curve $(Factor = 1)$             |
| 0x00B8  | CHG_STATUS        | 0x03       | 2         | Charger's status reporting                                                  |
| 0x00B9  | BAT_ALM_VOLT*     | 0x03, 0x06 | 2         | Battery low voltage alarm threshold (Factor = 0.01)                         |
| 0x00BA  | BAT_SHDN_VOLT*    | 0x03, 0x06 | 2         | Battery low voltage shutdown threshold (Factor = 0.01)                      |
| 0x00BB  | BAT_RCHG_VOLT*    | 0x03, 0x06 | 2         | Battery recharge voltage threshold (Factor = 0.01)                          |
|         |                   |            |           |                                                                             |

| Command<br>Code | Command<br>Name | Function code | # of data<br>Bytes | Description                                               |
|-----------------|-----------------|---------------|--------------------|-----------------------------------------------------------|
| 0x00BC          | BAT_OV_ALM_VOLT | 03h/06h       | 2                  | Battery high voltage alarm threshold (Factor=0.01)        |
| 0x00C0          | SCALING_FACTOR  | 0x03          | 6                  | Scaling ratio                                             |
| 0x00C3          | SYSTEM_STATUS   | 0x03          | 2                  | System status                                             |
| 0x00C4          | SYSTEM_CONFIG   | 0x03, 0x06    | 2                  | System configuration                                      |
| 0x00CF          | SETTING_UBLOCK  | 0x06          | 2                  | Setting unlock for user (NOTE1)                           |
| 0x0100          | INV_OPERATION   | 0x03, 0x06    | 2                  | Main mode configuration                                   |
| 0x011A          | READ_VBAT       | 0x04          | 2                  | Battery voltage read value (Factor = 0.01)                |
| 0x011B          | READ_CHG_CURR   | 0x04          | 2                  | Battery current read value (Factor = 0.01)                |
| 0x011C          | BAT_CAPACITY    | 0x04          | 2                  | Battery capacity percent read value, 0~100%               |
| 0x011D          | INV_STATUS      | 0x04          | 2                  | Inverter operation status reading                         |
| 0x011F          | READ_BP_WATT_HI | 0x04          | 2                  | Bypass wattage read value (High) (Factor = 0.1)           |
| 0x0120          | READ_BP_WATT_LO | 0x04          | 2                  | Bypass wattage read value (Low) (Factor = 0.1)            |
| 0x0125          | READ_BP_VA_HI   | 0x04          | 2                  | Bypass apparent power read value (High) (Factor = $0.1$ ) |
| 0x0126          | READ_BP_VA_LO   | 0x04          | 2                  | Bypass apparent power read value (Low) (Factor = 0.1)     |
| 0x0140          | DIR_CTRL        | 0x03, 0x06    | 1                  | A/D or D/A conversion control<br>00: A/D<br>01: D/A       |
| 0x0141          | VOUT_SET_REV*   | 0x03, 0x06    | 2                  | Discharge voltage setting (Factor = 0.01)                 |
| 0x0142          | IOUT_SET_REV*   | 0x03, 0x06    | 2                  | Discharge current setting (Factor = 0.01)                 |

| Command<br>Code | Command<br>Name | Function code | # of data<br>Bytes | Description                                       |
|-----------------|-----------------|---------------|--------------------|---------------------------------------------------|
| 0x0143          | BIDIR_CONFIG    | 0x03, 0x06    | 2                  | Bidirectional mode configuration                  |
| 0x0150          | P_OUT_SET*      | 0x03, 0x06    | 2                  | Power output control for user (Factor = 0.1)      |
| 0x0202          | AC_TYPE         | 0x03          | 2                  | AC type reading                                   |
| 0x0203          | INV_STATE       | 0x03          | 2                  | Operation state reporting                         |
| 0x0204          | CONNECT_STATE   | 0x03          | 2                  | Grid connection state reporting                   |
| 0x0205          | GRID_ALARM      | 0x03          | 4                  | Grid mode alarm reporting                         |
| 0x020B          | W               | 0x04          | 2                  | Active power read value (Factor = 0.1)            |
| 0x020C          | VA              | 0x04          | 2                  | Apprent power read value (Factor = 0.1)           |
| 0x020D          | VAR             | 0x04          | 2                  | Reactive power read value (Factor = 0.1)          |
| 0x020E          | PF              | 0x04          | 2                  | Power factor read value (Factor = 0.01)           |
| 0x020F          | A               | 0x04          | 2                  | Total AC current read value (Factor = 0.01)       |
| 0x0210          | LLV             | 0x04          | 2                  | Line to nature voltage read value (Factor = 0.01) |
| 0x0211          | LNV             | 0x04          | 2                  | Line to nature voltage read value (Factor = 0.01) |
| 0x0212          | HZ              | 0x04          | 2                  | AC frequency read value (Factor = 0.01)           |
| 0x0268          | THROT_SRC       | 0x03          | 4                  | Total injected watt-Hours<br>(Factor = 0.01)      |
| 0x029D          | W_MAX_RTG       | 0x03          | 2                  | Total absorbed watt-Hours (Factor = 0.01)         |
| 0x029E          | W_OVR_EXT_RTG   | 0x03          | 2                  | Activated functions for grid control reporting    |

| Code   | Name               | code       | Bytes | Description                                                                              |
|--------|--------------------|------------|-------|------------------------------------------------------------------------------------------|
| 0x029F | W_OVR_EXT_RTG_PF   | 0x03       | 2     | Rated power factor under over excitation (Factor = 0.01)                                 |
| 0x02A0 | W_UND_EXT_RTG      | 0x03       | 2     | Rated active power under under excitation (Factor = 1)                                   |
| 0x02A1 | W_UND_EXT_RTG_PF   | 0x03       | 2     | Rated power factor under under excitation (Factor = 0.01)                                |
| 0x02A2 | VA_MAX_RTG         | 0x03       | 2     | $\begin{tabular}{ll} Maximum apparent power output rating \\ (Factor = 1) \end{tabular}$ |
| 0x02A3 | VAR_MAX_INJ_RTG    | 0x03       | 2     | Rated reactive power during injection (Factor = 1)                                       |
| 0x02A4 | VAR_MAX_ABS_RTG    | 0x03       | 2     | Rated reactive power during absorption $(Factor = 1)$                                    |
| 0x02A7 | V_NOR_RTG          | 0x03       | 2     | Normal AC voltage rating (Factor = 0.01)                                                 |
| 0x02A8 | V_MAX_RTG          | 0x03       | 2     | Maximum AC voltage rating (Factor = 0.01)                                                |
| 0x02A9 | V_MIN_RTG          | 0x03       | 2     | Minimum AC voltage rating (Factor = 0.01)                                                |
| 0x02AA | A_MAX_RTG          | 0x03       | 2     | Maximum AC current rating (Factor = 0.01)                                                |
| 0x02D1 | GRID_TIE_REMOTE    | 0x03, 0x06 | 2     | Remote on/off for grid mode                                                              |
| 0x02D2 | CONNECT_UPPER_VOLT | 0x03, 0x06 | 2     | Upper voltage<br>(format, *0.01%Un)                                                      |
| 0x02D3 | CONNECT_LOWER_VOLT | 0x03, 0x06 | 2     | Lower voltage<br>(format, *0.01%Un)                                                      |
| 0x02D4 | CONNECT_UPPER_FREQ | 0x03, 0x06 | 2     | Upper frequency<br>(format, *0.01Hz)                                                     |
| 0x02D5 | CONNECT_LOWER_FREQ | 0x03, 0x06 | 2     | Lower frequency<br>(format, *0.01Hz)                                                     |
| 0x02D6 | CONNECT_DLY_TIME   | 0x03, 0x06 | 2     | Observation time (format, *0.01sec)                                                      |
|        |                    |            |       |                                                                                          |

Function # of data

Description

The ramp-rate for conneciton

(format, \*1%Pn/sec)

2

CONNECT\_P\_RATE 0x03, 0x06

Command

0x02D7

6

Command

| Command<br>Code | Command<br>Name   | Function code | # of data<br>Bytes | Description                                                     |
|-----------------|-------------------|---------------|--------------------|-----------------------------------------------------------------|
| 0x02D8          | RECONNECT_P_RATE  | 0x03, 0x06    | 2                  | The ramp-rate for reconneciton (format, *1%Pn/sec)              |
| 0x02E4          | SAFTY_FUNC_CONFIG | 0x03, 0x06    | 2                  | Safety function configuration                                   |
| 0x02E5          | COUNTRY_SET       | 0x03, 0x06    | 2                  | Country/region configuration                                    |
| 0x02E8          | CTRL_MODE         | 0x03, 0x06    | 2                  | Control mode                                                    |
| 0x02E9          | P_SET_RATE        | 0x03, 0x06    | 2                  | The ramp-rate for active power (format, *1%Pn/sec)              |
| 0x02EA          | P_TAU             | 0x03, 0x06    | 2                  | The time constantFor P(U) (format, *0.01sec)                    |
| 0x02EB          | Q_TAU             | 0x03, 0x06    | 2                  | The time constant For reactive power setting (format, *0.01sec) |
| 0x02EC          | P_SET             | 0x03, 0x06    | 2                  | Maximum active power output setting (format, *0.1%Pn)           |
| 0x02ED          | Q_SET             | 0x03, 0x06    | 2                  | Maximum reactive power output setting (format, *0.1%Qn)         |
| 0x02EE          | PF_SET            | 0x03, 0x06    | 2                  | cosφ set point<br>(format, *0.01 PF)                            |
| 0x02EF          | PF_P_LOCKIN_V     | 0x03, 0x06    | 2                  | Lock in voltage for cosφ(P) mode (format, *0.01%Un)             |
| 0x02F0          | PF_P_LOCKOUT_V    | 0x03, 0x06    | 2                  | Lock out voltage for cosφ(P) mode (format, *0.01%Un)            |
| 0x02F1          | PF_P_CURVE_PF1    | 0x03, 0x06    | 2                  | F1 on the cosφ(P) Curve (format, *0.01 PF)                      |
| 0x02F2          | PF_P_CURVE_P1     | 0x03, 0x06    | 2                  | P1 on the cosφ(P) Curve (format, *0.1%Pn)                       |
| 0x02F3          | PF_P_CURVE_PF2    | 0x03, 0x06    | 2                  | Pf2 on the cosφ(P) Curve (format, *0.01 PF)                     |
| 0x02F4          | PF_P_CURVE_P2     | 0x03, 0x06    | 2                  | P2 on the cosφ(P) Curve<br>(format, *0.1%Pn)                    |
| 0x02F5          | PF_P_CURVE_PF3    | 0x03, 0x06    | 2                  | Pf3 on the cosφ(P) Curve (format, *0.01 PF)                     |

|                 |                 |               |                    | <del>,</del>                                                     |
|-----------------|-----------------|---------------|--------------------|------------------------------------------------------------------|
| Command<br>Code | Command<br>Name | Function code | # of data<br>Bytes | Description                                                      |
| 0x02F6          | PF_P_CURVE_P3   | 0x03, 0x06    | 2                  | P3 on the cosφ(P) Curve<br>(format, *0.1%Pn)                     |
| 0x02F7          | PF_P_CURVE_PF4  | 0x03, 0x06    | 2                  | Pf4 on the cosφ(P) Curve<br>(format, *0.01 PF)                   |
| 0x02F8          | PF_P_CURVE_P4   | 0x03, 0x06    | 2                  | P4 on the cosφ(P) Curve<br>(format, *0.1%Pn)                     |
| 0x0327          | Q_P_CURVE_Q1    | 0x03, 0x06    | 2                  | Q1 on the Q(P) Curve (format, *0.01%Qn)                          |
| 0x0328          | Q_P_CURVE_P1    | 0x03, 0x06    | 2                  | P1 on the Q(P) Curve (format, *0.1%Pn)                           |
| 0x0329          | Q_P_CURVE_Q2    | 0x03, 0x06    | 2                  | Q2 on the Q(P) Curve (format, *0.1%Qn)                           |
| 0x032A          | Q_P_CURVE_P2    | 0x03, 0x06    | 2                  | P2 on the Q(P) Curve (format, *0.1%Pn)                           |
| 0x032B          | Q_P_CURVE_Q3    | 0x03, 0x06    | 2                  | Q3 on the Q(P) Curve (format, *0.1%Qn)                           |
| 0x032C          | Q_P_CURVE_P3    | 0x03, 0x06    | 2                  | P3 on the Q(P) Curve (format, *0.1%Pn)                           |
| 0x032D          | Q_P_CURVE_Q4    | 0x03, 0x06    | 2                  | Q4 on the Q(P) Curve (format, *0.1%Qn)                           |
| 0x032E          | Q_P_CURVE_P4    | 0x03, 0x06    | 2                  | P4 on the Q(P) Curve (format, *0.1%Pn)                           |
| 0x035D          | Q_V_MIN_COS     | 0x03, 0x06    | 2                  | Minimum power factor limitation for Q(U) mode (format, *0.01 PF) |
| 0x035E          | Q_V_LOCKIN_P    | 0x03, 0x06    | 2                  | Lock in power for Q(U) mode (format, *0.1%Pn)                    |
| 0x035F          | Q_V_LOCKOUT_P   | 0x03, 0x06    | 2                  | Lock out power for Q(U) mode (format, *0.1%Pn)                   |
| 0x0360          | Q_V_CURVE_Q1    | 0x03, 0x06    | 2                  | Q1 on the Q(U) Curve (format, *0.1%Qn)                           |
| 0x0361          | Q_V_CURVE_V1    | 0x03, 0x06    | 2                  | V1 on the Q(U) Curve<br>(format, *0.01%Un)                       |
| 0x0362          | Q_V_CURVE_Q2    | 0x03, 0x06    | 2                  | Q <sub>2</sub> on the Q(U) Curve (format, *0.1%Qn)               |
|                 |                 |               |                    |                                                                  |

| Command<br>Code |              |            | # of data<br>Bytes | Description                                            |
|-----------------|--------------|------------|--------------------|--------------------------------------------------------|
| 0x0363          | Q_V_CURVE_V2 | 0x03, 0x06 | 2                  | V <sub>2</sub> on the Q(U) Curve<br>(format, *0.01%Un) |
| 0x0364          | Q_V_CURVE_Q3 | 0x03, 0x06 | 2                  | Q <sub>3</sub> on the Q(U) Curve<br>(format, *0.1%Qn)  |
| 0x0365          | Q_V_CURVE_V3 | 0x03, 0x06 | 2                  | V <sub>3</sub> on the Q(U) Curve<br>(format, *0.01%Un) |
| 0x0366          | Q_V_CURVE_Q4 | 0x03, 0x06 | 2                  | Q4 on the Q(U) Curve<br>(format, *0.1%Qn)              |
| 0x0367          | Q_V_CURVE_V4 | 0x03, 0x06 | 2                  | V4 on the Q(U) Curve<br>(format, *0.01%Un)             |
| 0x03A0          | P_V_CURVE_P1 | 0x03, 0x06 | 2                  | P1 on the P(U) Curve<br>(format, *0.1%Pn)              |
| 0x03A1          | P_V_CURVE_V1 | 0x03, 0x06 | 2                  | V <sub>1</sub> on the P(U) Curve<br>(format, *0.01%Un) |
| 0x03A2          | P_V_CURVE_P2 | 0x03, 0x06 | 2                  | P2 on the P(U) Curve<br>(format, *0.1%Pn)              |
| 0x03A3          | P_V_CURVE_V2 | 0x03, 0x06 | 2                  | V <sub>2</sub> on the P(U) Curve<br>(format, *0.01%Un) |
| 0x03A4          | P_V_CURVE_P3 | 0x03, 0x06 | 2                  | P <sub>3</sub> on the P(U) Curve<br>(format, *0.1%Pn)  |
| 0x03A5          | P_V_CURVE_V3 | 0x03, 0x06 | 2                  | V <sub>3</sub> on the P(U) Curve<br>(format, *0.01%Un) |
| 0x03A6          | P_V_CURVE_P4 | 0x03, 0x06 | 2                  | P4 on the P(U) Curve<br>(format, *0.1%Pn)              |
| 0x03A7          | P_V_CURVE_V4 | 0x03, 0x06 | 2                  | V4 on the P(U) Curve<br>(format, *0.01%Un)             |
| 0x03D9          | UVRT_VOLT1   | 0x03, 0x06 | 2                  | V <sub>1</sub> on the UVRT Curve<br>(format, *0.01%Un) |
| 0x03DA          | UVRT_TIME1   | 0x03, 0x06 | 2                  | T <sub>1</sub> on the UVRT Curve (format, *0.01sec)    |
| 0x03DB          | UVRT_VOLT2   | 0x03, 0x06 | 2                  | V <sub>2</sub> on the UVRT Curve<br>(format, *0.01%Un) |
| 0x03DC          | UVRT_TIME2   | 0x03, 0x06 | 2                  | T <sub>2</sub> on the UVRT Curve (format, *0.01sec)    |

| Command<br>Code | Command<br>Name | Function code | # of data<br>Bytes | Description                                            |
|-----------------|-----------------|---------------|--------------------|--------------------------------------------------------|
| 0x03DD          | UVRT_VOLT3      | 0x03, 0x06    | 2                  | V₃ on the UVRT Curve<br>(format, *0.01%Un)             |
| 0x03DE          | UVRT_TIME3      | 0x03, 0x06    | 2                  | T <sub>3</sub> on the UVRT Curve (format, *0.01sec)    |
| 0x03DF          | UVRT_VOLT4      | 0x03, 0x06    | 2                  | V4 on the UVRT Curve<br>(format, *0.01%Un)             |
| 0x03E0          | UVRT_TIME4      | 0x03, 0x06    | 2                  | T4 on the UVRT Curve (format, *0.01sec)                |
| 0x03E1          | UVRT_VOLT5      | 0x03, 0x06    | 2                  | V <sub>5</sub> on the UVRT Curve (format, *0.01%Un)    |
| 0x03E2          | UVRT_TIME5      | 0x03, 0x06    | 2                  | Ts on the UVRT Curve (format, *0.01sec)                |
| 0x03E3          | UVRT_VOLT6      | 0x03, 0x06    | 2                  | V <sub>6</sub> on the UVRT Curve (format, *0.01%Un)    |
| 0x03E4          | UVRT_TIME6      | 0x03, 0x06    | 2                  | T <sub>6</sub> on the UVRT Curve (format, *0.01sec)    |
| 0x03E5          | UVRT_VOLT7      | 0x03, 0x06    | 2                  | V7 on the UVRT Curve<br>(format, *0.01%Un)             |
| 0x03E6          | UVRT_TIME7      | 0x03, 0x06    | 2                  | T7 on the UVRT Curve (format, *0.01sec)                |
| 0x0468          | OVRT_VOLT1      | 0x03, 0x06    | 2                  | V <sub>1</sub> on the OVRT Curve<br>(format, *0.01%Un) |
| 0x0469          | OVRT_TIME1      | 0x03, 0x06    | 2                  | T <sub>1</sub> on the OVRT Curve (format, *0.01sec)    |
| 0x046A          | OVRT_VOLT2      | 0x03, 0x06    | 2                  | V <sub>2</sub> on the OVRT Curve<br>(format, *0.01%Un) |
| 0x046B          | OVRT_TIME2      | 0x03, 0x06    | 2                  | T <sub>2</sub> on the OVRT Curve (format, *0.01sec)    |
| 0x046C          | OVRT_VOLT3      | 0x03, 0x06    | 2                  | V <sub>3</sub> on the OVRT Curve (format, *0.01%Un)    |
| 0x046D          | OVRT_TIME3      | 0x03, 0x06    | 2                  | T <sub>3</sub> on the OVRT Curve (format, *0.01sec)    |
| 0x046E          | OVRT_VOLT4      | 0x03, 0x06    | 2                  | V <sub>4</sub> on the OVRT Curve<br>(format, *0.01%Un) |

| Command<br>Code | Command<br>Name  | Function code | # of data<br>Bytes | Description                                              |
|-----------------|------------------|---------------|--------------------|----------------------------------------------------------|
| 0x046F          | OVRT_TIME4       | 0x03, 0x06    | 2                  | T4 on the OVRT Curve (format, *0.01sec)                  |
| 0x0470          | OVRT_VOLT5       | 0x03, 0x06    | 2                  | V5 on the OVRT Curve<br>(format, *0.01%Un)               |
| 0x0471          | OVRT_TIME5       | 0x03, 0x06    | 2                  | Ts on the OVRT Curve (format, *0.01sec)                  |
| 0x0472          | OVRT_VOLT6       | 0x03, 0x06    | 2                  | V <sub>6</sub> on the OVRT Curve<br>(format, *0.01%Un)   |
| 0x0473          | OVRT_TIME6       | 0x03, 0x06    | 2                  | T <sub>6</sub> on the OVRT Curve (format, *0.01sec)      |
| 0x0474          | OVRT_VOLT7       | 0x03, 0x06    | 2                  | V7 on the OVRT Curve<br>(format, *0.01%Un)               |
| 0x0475          | OVRT_TIME7       | 0x03, 0x06    | 2                  | T7 on the OVRT Curve<br>(format, *0.01sec)               |
| 0x0609          | LFSMO_FREQ_START | 0x03, 0x06    | 2                  | Start frqency of LFSM-O<br>(format, *0.01Hz)             |
| 0x060A          | LFSMO_FREQ_STOP  | 0x03, 0x06    | 2                  | Stop frqency of LFSM-O<br>(format, *0.01Hz)              |
| 0x060B          | LFSMO_STOP_DLY   | 0x03, 0x06    | 2                  | Stop deay of LFSM-O<br>(format, *0.01sec)                |
| 0x060C          | LFSMO_DROOP_RATE | 0x03, 0x06    | 2                  | Droop rate of LFSM-O (format, *0.1%)                     |
| 0x060D          | LFSMO_ACTIVE_DLY | 0x03, 0x06    | 2                  | Activation delay of LFSM-O (format, *0.01%)              |
| 0x060E          | LFSMU_FREQ_START | 0x03, 0x06    | 2                  | Start frqency of LFSM-U<br>(format, *0.01Hz)             |
| 0x0611          | LFSMU_DROOP_RATE | 0x03, 0x06    | 2                  | Droop rate of LFSM-U<br>(format, *0.1%)                  |
| 0x0612          | LFSMU_ACTIVE_DLY | 0x03, 0x06    | 2                  | Activation delay of LFSM-U (format, *0.01sec)            |
| 0x0613          | LFSM_P_REF       | 03h/06h       | 2                  | LFSM Pref setting<br>(0: Pn; 1: PM)                      |
| 0x0640          | UVP1_VOLT        | 0x03, 0x06    | 2                  | 1st-level undervoltage protection (V) (format, *0.01%Un) |

| Command<br>Code | Command<br>Name | Function code | # of data<br>Bytes | Description                                                |
|-----------------|-----------------|---------------|--------------------|------------------------------------------------------------|
| 0x0641          | UVP1_TIME       | 0x03, 0x06    | 2                  | 1st-level undervoltage trip time (T) (format, *0.01sec)    |
| 0x0642          | UVP2_VOLT       | 0x03, 0x06    | 2                  | 2nd-level undervoltage protection (V) (format, *0.01%Un)   |
| 0x0643          | UVP2_TIME       | 0x03, 0x06    | 2                  | 2nd-level undervoltage trip time (T) (format, *0.01sec)    |
| 0x0644          | UVP3_VOLT       | 0x03, 0x06    | 2                  | 3rd-level undervoltage protection (V) (format, *0.01%Un)   |
| 0x0645          | UVP3_TIME       | 0x03, 0x06    | 2                  | 3rd-level undervoltage trip time (T) (format, *0.01sec)    |
| 0x0646          | OVP1_VOLT       | 0x03, 0x06    | 2                  | 1st-level overvoltage protection (V) (format, *0.01%Un)    |
| 0x0647          | OVP1_TIME       | 0x03, 0x06    | 2                  | 1st-level overvoltage trip time (T) (format, *0.01sec)     |
| 0x0648          | OVP2_VOLT       | 0x03, 0x06    | 2                  | 2nd-level overvoltage protection (V) (format, *0.01%Un)    |
| 0x0649          | OVP2_TIME       | 0x03, 0x06    | 2                  | 2nd-level overvoltage trip time (T) (format, *0.01sec)     |
| 0x064A          | OVP3_VOLT       | 0x03, 0x06    | 2                  | 3rd-level overvoltage protection (V) (format, *0.01%Un)    |
| 0x064B          | OVP3_TIME       | 0x03, 0x06    | 2                  | 3rd-level overvoltage trip time (T) (format, *0.01sec)     |
| 0x064C          | UFP1_FREQ       | 0x03, 0x06    | 2                  | 1st-level underfrequency threshold (Hz) (format, *0.01%Un) |
| 0x064D          | UFP1_TIME       | 0x03, 0x06    | 2                  | 1st-level underfrequency trip time (T) (format, *0.01sec)  |
| 0x064E          | UFP1_TIME       | 0x03, 0x06    | 2                  | 2nd-level underfrequency threshold (Hz) (format, *0.01%Un) |
| 0x064F          | UFP2_TIME       | 0x03, 0x06    | 2                  | 2nd-level underfrequency trip time (T) (format, *0.01sec)  |
| 0x0650          | UFP3_FREQ       | 0x03, 0x06    | 2                  | 3rd-level underfrequency threshold (Hz) (format, *0.01%Un) |
| 0x0651          | UFP3_TIME       | 0x03, 0x06    | 2                  | 3rd -level underfrequency trip time (T) (format, *0.01sec) |

| Command<br>Code | Command<br>Name   | Function code | # of data<br>Bytes | Description                                                       |
|-----------------|-------------------|---------------|--------------------|-------------------------------------------------------------------|
| 0x0652          | OFP1_FREQ         | 0x03, 0x06    | 2                  | 1st-level overfrequency threshold (Hz) (format, *0.01%Un)         |
| 0x0653          | OFP1_TIME         | 0x03, 0x06    | 2                  | 1st-level overfrequency trip time (T) (format, *0.01sec)          |
| 0x0654          | OFP2_FREQ         | 0x03, 0x06    | 2                  | 2nd-level overfrequency threshold (Hz) (format, *0.01%Un)         |
| 0x0655          | OFP2_TIME         | 0x03, 0x06    | 2                  | 2nd-level overfrequency trip time (T) (format, *0.01sec)          |
| 0x0656          | OFP3_FREQ         | 0x03, 0x06    | 2                  | 3rd-level overfrequency threshold (Hz) (format, *0.01%Un)         |
| 0x0657          | OFP3_TIME         | 0x03, 0x06    | 2                  | 3rd-level overfrequency trip time (T) (format, *0.01sec)          |
| 0x0658          | OVP10MIN_VOLT     | 0x03, 0x06    | 2                  | 10-minute average overvoltage protection point (format, *0.01%Un) |
| 0x0659          | ROCOF_SLOPE       | 0x03, 0x06    | 2                  | Slope setting of ROCOF (format, *0.1Hz/sec)                       |
| 0x065A          | ROCOF_WINDOW_TIME | 0x03, 0x06    | 2                  | Window time of ROCOF (format, *0.01sec)                           |
| 0x0800          | EVENTLOG_1_CODE   | 0x04          | 2                  | Most recent 1st event log record                                  |
| 0x0801          | EVENTLOG_1_TIME   | 0x04          | 4                  | Recored time for most recent 1st event log                        |
| 0x0803          | EVENTLOG_2_CODE   | 0x04          | 2                  | Most recent 2nd event log record                                  |
| 0x0804          | EVENTLOG_2_TIME   | 0x04          | 4                  | Recored time for most recent 2nd event log                        |
| 0x0806          | EVENTLOG_3_CODE   | 0x04          | 2                  | Most recent 3rd event log record                                  |
| 0x0807          | EVENTLOG_3_TIME   | 0x04          | 4                  | Recored time for most recent 3rd event log                        |
| 0x0809          | EVENTLOG_4_CODE   | 0x04          | 2                  | Most recent 4rd event log record                                  |
| 0x080A          | EVENTLOG_4_TIME   | 0x04          | 4                  | Recored time for most recent 4th event log                        |

| 7 |               |  |
|---|---------------|--|
| A |               |  |
| 7 | $\overline{}$ |  |
| а | . 1           |  |

| Command<br>Code | Command<br>Name | Function code | # of data<br>Bytes | Description                                       |
|-----------------|-----------------|---------------|--------------------|---------------------------------------------------|
| 0x080C          | EVENTLOG_5_CODE | 0x04          | 2                  | Most recent 5th event log record                  |
| 0x080D          | EVENTLOG_5_TIME | 0x04          | 4                  | Recored time for most recent 5th event log        |
| 0x0820          | ENTER_PWD_B0    | 06            | 2                  | Password_1 for DSO                                |
| 0x0821          | ENTER_PWD_B2    | 06            | 2                  | Password_2 for DSO                                |
| 0x0822          | ENTER_PWD_B4    | 06            | 2                  | Password_3 for DSO                                |
| 0x0823          | SET_PWD_KEY     | 06            | 2                  | Unlock/lock status reporting and password setting |
| 0x0910          | CLEAR_LOG       | 0x06          | 2                  | Clear recored logs                                |

#### NOTE:

- 1. Before setting POUT\_USER\_CMD (0x0150), please utilize the SETTING\_UBLOCK command to unlock. Refer to section 6.2.6.2 for detailed instructions.
- 2. Setting commands with \* at the end support the EEP\_OFF and EEP\_CONFIG functions. For detailed information on how to enable them, please refer to SYSTEM\_CONFIG (0x00C4).

#### Data conversion:

Actual Value = Communication Read Value × Factor Value, where the factor value is used for both writing and reading during communication for data conversion. Each command may have a different factor value, which can be found in the command list or retrieved from the SCALING FACTOR (0x00C0) command.

- Example 1: If the communication read value for the READ\_VOUT command is 0x0960 (hexadecimal), and the factor value for the command is 0.01: Actual Value = 0x0960 (hex) $\rightarrow 2400$  (decimal)  $\times 0.01 = 24V$ .
- Example 2: The PF\_SET (0x02EE) command supports both lagging and leading power factor values. The corresponding reactive power will be positive or negative accordingly.

The conversion formula between PF\_SET and PF is:

Q > 0 (lagging):  $PF\_SET = 100 - (PF \times 100)$ 

Q < 0 (leading):  $PF\_SET = -(100 - (PF \times 100))$ 

Example: If PF = 0.9, then PF\_SET =  $10 \rightarrow$  communication setting = 0x000A.

#### ⊚FAULT\_STATUS(0x0040):

|           | Bit 7   | Bit 6  | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0    |
|-----------|---------|--------|---------|-------|-------|-------|-------|----------|
| High byte |         |        |         |       |       |       | UTP   | HV_OVP   |
| Low byte  | HI_TEMP | OP_OFF | AC_FAIL | SHORT | OLP   | OVP   | ОТР   | FAN_FAIL |

#### Low byte:

#### Bit 0 FAN\_FAIL: Fan locked flag

0 = Fan working normally

1 = Fan locked

#### Bit 1 OTP: Over temperature protection

0 = Internal temperature normal

1 = Internal temperature too high

## Bit 2 OVP: DC over voltage protection

0 = DC voltage normal

1 = DC over voltage protected

#### Bit 3 OLP: DC over current protection

0 = DC current normal

1 = DC over current protected

## Bit 4 SHORT : Short circuit protection

0 = Shorted circuit do not exist

1 = Shorted circuit protected

## Bit 5 AC\_FAIL: AC abnormal flag

0 = AC range normal

1 = AC range abnormal

## Bit6 OP\_OFF : DC status

0 = DC turned on

1 = DC turned off

## Bit7 HI\_TEMP: Internal high temperature alarm

 $0 = Internal\ temperature\ normal$ 

1 = Internal temperature high

#### High byte:

## Bit 0 HV\_OVP: HV over voltage protection

0 = HV voltage normal

1 = HV over voltage protected

#### Bit 1 UTP: Under temperature protection

0 = Internal temperature normal

1 = Internal temperature too low

| MFR_ID_B0B5                               |      |      |      |      |      |  |  |  |  |
|-------------------------------------------|------|------|------|------|------|--|--|--|--|
| Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 |      |      |      |      |      |  |  |  |  |
| 0x4D                                      | 0x45 | 0x41 | 0x4E | 0x57 | 0x45 |  |  |  |  |

| MFR_ID_B6B11 |        |        |        |        |        |  |  |  |  |
|--------------|--------|--------|--------|--------|--------|--|--|--|--|
| Byte 0       | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 |  |  |  |  |
| 0x4C         | 0x4C   | 0x20   | 0x20   | 0x20   | 0x20   |  |  |  |  |

| MFR_ID_B0B5                               |      |      |      |      |      |  |  |  |  |
|-------------------------------------------|------|------|------|------|------|--|--|--|--|
| Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 |      |      |      |      |      |  |  |  |  |
| 0x53                                      | 0x48 | 0x50 | 0x2D | 0x35 | 0x4B |  |  |  |  |

|        | MFR_ID_B6B11 |        |        |        |        |  |  |  |  |  |
|--------|--------------|--------|--------|--------|--------|--|--|--|--|--|
| Byte 0 | Byte 1       | Byte 2 | Byte 3 | Byte 4 | Byte 5 |  |  |  |  |  |
| 0x2D   | 0x32         | 0x34   | 0x20   | 0x20   | 0x20   |  |  |  |  |  |

⊚MFR\_REVISION\_B0B5(0x008C-0x008E) is the firmware revision (hexadecimal). A range of 0x00(R00.0)~0xFE (R25.4) represents the firmware version of an MCU; 0xFF represents no MCU existed

EX: The supply has two MCUs, the firmware version of the MCU number 1 is version R25.4 (0xFE), the MCU number 2 is version R10.5 (0x69)

| Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 |
|--------|--------|--------|--------|--------|--------|
| 0xFE   | 0x69   | 0xFE   | 0xFF   | 0xFF   | 0xFF   |

| Byte 0 | Byte 1 | Byte 2 Byte 3 |      | Byte 4 | Byte 5 |  |
|--------|--------|---------------|------|--------|--------|--|
| 0x31   | 0x38   | 0x30          | 0x31 | 0x30   | 0x31   |  |

| Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 |
|--------|--------|--------|--------|--------|--------|
| 0x31   | 0x38   | 0x30   | 0x31   | 0x30   | 0x31   |

| Byte 6 | Byte 7 | Byte 8 | Byte 9 | Byte 10 | Byte 11 |
|--------|--------|--------|--------|---------|---------|
| 0x30   | 0x30   | 0x30   | 0x30   | 0x30    | 0x31    |

## ⊚CURVE\_CONFIG(0x00B4):

|           | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
| High byte |       |       |       |       |       | FVTOE | CVTOE | ССТОЕ |
| Low byte  |       | STGS  |       |       |       |       | CUVS  |       |

#### Low byte:

## Bit 0:1 CUVS: Charge Curve Selection

00 = Customized Charge Curve (default)

01 = Gel Battery

10 = Flooded Battery

11 = LiFeO4 battery Battery

## Bit 6 STGS: 2/3 Stage Charge Setting

0 = 3 stage charge (default, CURVE\_VBST and CURVE\_V FLOAT)

1 = 2 stage charge (only CURVE\_VBST)

#### High byte:

Bit 0 STGS: 2/3 Stage Charge Setting

0 = 3 stage charge (default)

1 = 2 stage charge

Bit 1 CVTOE: Constant Voltage Stage Timeout Indication Enable

0 = disabled (default)

1 = enabled

Bit 2 FVTOE: Float Voltage Stage Timeout Indication Enable

0 = disabled (default)

1 = enabled

Note: Unsupported settings displays with "0"

⊚CHG\_STATUS(0x00B8) :

|           | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
| High byte | FVTOF | CVTOF | CCTOF |       |       |       |       |       |
| Low byte  |       |       |       |       | FVM   | CVM   | ССМ   | FULLM |

Low byte:

Bit 0 FULLM: Fully Charged Mode Status

0 = NOT fully charged

1 = fully charged

Bit 1 CCM: Constant Current Mode Status

0 = the charger NOT in constant current mode

1 = the charger in constant current mode

Bit 2 CVM: Constant Voltage Mode Status

0 = the charger NOT in constant voltage mode

1 = the charger in constant voltage mode

Bit 3 FVM: Float Mode Status

0 = the charger NOT in float mode

1 = the charger in float mode

## High byte:

Bit 5 CCTOF: Time Out Flag of Constant Current Mode

0 = NO time out in constant current mode

1 = constant current mode timed out

Bit 6 CVTOF: Time Out Flag of Constant Voltage Mode

0 = NO time out in constant voltage mode

1 = constant voltage mode timed out

Bit 7 FVTOF: Time Out Flag of Float Voltage Mode

0 = NO time out in float mode

1 = float mode timed out

Note: Unsupported settings displays with "0"

⊚SCALING\_FACTOR(0x00C0):

| Byte 5     | Bit 7                     | Bit 6      | Bit 5       | Bit 4 | Bit 3                    | Bit 2        | Bit 1     | Bit 0 |
|------------|---------------------------|------------|-------------|-------|--------------------------|--------------|-----------|-------|
| Definition | inition Reserved Reserved |            |             |       |                          |              |           |       |
| Supported? |                           | N          | 0           |       | NO                       |              |           |       |
| Byte 4     | Bit 7                     | Bit 6      | Bit 5       | Bit 4 | Bit 3                    | Bit 2        | Bit 1     | Bit 0 |
| Definition |                           | Rese       | rved        |       |                          | Frequenc     | y Factor  |       |
| Supported? |                           | N          | 0           |       |                          | YE           | S         |       |
| Byte 3     | Bit 7                     | Bit 6      | Bit 5       | Bit 4 | Bit 3                    | Bit 2        | Bit 1     | Bit 0 |
| Definition |                           | Watt       | actor       |       | IIN Factor / IAC Factor  |              |           |       |
| Supported? |                           | YI         | ES .        |       | YES                      |              |           |       |
| Byte 2     | Bit 7                     | Bit 6      | Bit 5       | Bit 4 | Bit 3                    | Bit 2        | Bit 1     | Bit 0 |
| Definition | С                         | URVE_TIM   | EOUT Facto  | or    | TEMPERATURE_1 Factor     |              |           |       |
| Supported? |                           | ΥI         | S           |       |                          | YE           | S         |       |
| Byte 1     | Bit 7                     | Bit 6      | Bit 5       | Bit 4 | Bit 3                    | Bit 2        | Bit 1     | Bit 0 |
| Definition |                           | FAN_SPE    | ED Factor   |       | V                        | 'IN Factor / | VAC Facto | r     |
| Supported? |                           | YI         | ES .        |       |                          | YE           | S         |       |
| Byte 0     | Bit 7                     | Bit 6      | Bit 5       | Bit 4 | Bit 3                    | Bit 2        | Bit 1     | Bit 0 |
| Definition | IC                        | OUT Factor | / IDC Facto | or    | VOUT Factor / VDC Factor |              |           |       |
| Supported? |                           | YI         | ES .        |       |                          | YE           | ES .      |       |

 $0xA \sim 0xF = Reserved$ 

#### VOUT Factor/VDC Factor: The factor value for voltage-FAN\_SPEED Factor: The factor value of READ\_FAN\_SPEED\_1/2 Bit 0:3 Bit 4:7 0x0= Fan speed relevant commands not supported related commands 0x0=DC voltage relevant commands not supported $0x1 \sim 0x3 = Not in use, reserved (default 0)$ $0x1 \sim 0x3 = Not in use, reserved (default 0)$ 0x4 = 0.0010x4 = 0.0010x5 = 0.010x5 = 0.010x6 = 0.10x6 = 0.10x7 = 1.00x7 = 1.00x8 = 100x8 = 100x9 = 1000x9 = 100 $0xA \sim 0xF = Reserved$ $0xA \sim 0xF = Reserved$ byte 2: The factor value of READ\_TEMPERATURE\_1 Bit 0:3 IOUT Factor/IDC Factor: The factor value for DC current-related 0x0=Internal temperature relevant commands not supported Bit 4:7 $0x1\sim0x3=Not in use, reserved (default 0)$ commands 0x0=DC voltage relevant commands not supported 0x4 = 0.001 $0x1 \sim 0x3 = Not in use, reserved (default 0)$ 0x5 = 0.010x5 = 0.010x7 = 1.00x6 = 0.10x8 = 100x7 = 1.00x9 = 1000x8 = 10 $0xA \sim 0xF = Reserved$ 0x9 = 100 $0xA \sim 0xF = Reserved$ Bit 4:7 CURVE TIMEOUT Factor: The Factor of CC/CV/Float timeout byte 1: 0x0=CURVE\_TIMEOUT relevant commands not supported VIN Factor/VAC Factor: The factor value of READ\_VIN Bit 0:3 $0x1 \sim 0x3 = Not in use, reserved (default 0)$ 0x0=AC voltage relevant commands not supported 0x4 = 0.001 $0x1\sim0x3=Not in use, reserved (default 0)$ 0x5 = 0.010x4 = 0.0010x6 = 0.10x5 = 0.010x7 = 1.00x6 = 0.10x8 = 100x7 = 1.00x9 = 1000x8 = 100xA~0xF=Reserved 0x9 = 100

#### byte 3:

## Bit 0:3 IIN Factor/IAC Factor: The Factor of input current/AC current

0x0=AC input current relevant commands not supported

 $0x1\sim0x3=Not in use, reserved (default 0)$ 

0x4 = 0.001

0x5 = 0.01

0x6 = 0.1

0x7 = 1.0

0x8 = 10

0x9 = 100

 $0xA \sim 0xF = Reserved$ 

#### Bit 4:7 Watt Factor: The Factor of output AC wattage

#### (Power/Reactive/VA)

0x0=AC wattage relevant commands not supported

 $0x1 \sim 0x3 = Not in use, reserved (default 0)$ 

0x4 = 0.001

0x5 = 0.01

0x6 = 0.1

0x7 = 1.0

0x8 = 10

0x9 = 100

 $0xA\sim0xF=Reserved$ 

## byte 4:

## Bit 0:3 Frequency Factor: The Factor of Frequency

0x0=Frequency relevant commands not supported

 $0x1 \sim 0x3 = Not in use, reserved (default 0)$ 

0x4 = 0.001

0x5 = 0.01

0x6 = 0.1

0x7 = 1.0

0x8 = 10

0x9 = 100

 $0xA \sim 0xF = Reserved$ 

#### ⊚SYSTEM\_CONFIG(0x00C4):

| High byte  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit1    | Bit 0    |
|------------|-------|-------|-------|-------|-------|---------|---------|----------|
| Definition |       |       |       |       |       | EEP_OFF | EEP_C   | ONFIG    |
| Low byte   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit1    | Bit 0    |
| Definition |       |       |       |       |       | OPERATI | ON_INIT | MOD_CTRL |

#### Low byte:

## Bit 0 MOD\_CTRL: MODBus communication control status

0 = The output voltage/current defined by control over SVR

1 = The output voltage, current, ON/OFF control defined by control over MODBus (VOUT\_SET, IOUT\_SET, OPERATION)

#### Bit 1:2 OPERATION\_INIT: Pre-set value of power on operation command

0b00 = Power OFF, pre-set 0x00(OFF)

0b01 = PowerON, pre-set0x01(ON)

0b10 = Pre-set is previous set value

0b11 = not used, reserved

#### High byte:

## Bit 0: 1 Bit 0: 1 EEP\_CONFIG: EEPROM Configuration

00: Immediate. Changes to parameters are written to EEPROM immediately (factory default)

01: 1 minute delay. Write changes to EEPROM if all parameters remain unchanged for 1 minute

10: 10 minute delay. Write changes to EEPROM if all parameters remain unchanged for 10 minutes

11: Reserved

## Bit 2 EEP\_OFF: EEPROM storage function ON/OFF

0: Enable. Parameters to be saved into EEPROM (factory default)

1: Disable. Parameters NOT to be saved into EEPROM

#### ⊚SYSTEM\_STATUS(0x00C3):

|           | Bit 7 | Bit 6 | Bit 5             | Bit 4 | Bit 3 | Bit 2 | Bit1  | Bit 0 |
|-----------|-------|-------|-------------------|-------|-------|-------|-------|-------|
| High byte |       |       |                   |       |       |       |       |       |
| Low byte  |       | EEPER | INITIAL_<br>STATE |       |       | DA_OK | DC_OK | M/S   |

## Low byte:

6

#### Bit 0 M/S: Parallel mode status

0 = Current device is Slave

1 = Current device is Master

#### DC\_OK: Secondary DD output voltage status Bit 1

0 = Secondary DD output voltage status TOO LOW

1 = Secondary DD output voltage status NORMAL

#### **DA\_OK**: Primary DA status Bit 2

0 = Primary DA OFF or abnormal

1=Primary DA ON normally

#### Bit 5 **INITIAL STATE:** Device initialized status

0 = In initialization status

1 = NOT in initialization status

#### Bit 6 EEPER: EEPROM data access error

0 = EEPROM data access normal

1 = EEPROM data access error

Note: Unsupported settings displays with "0"

## 

| High byte  | Bit 15 | Bit 14 | Bit 13 | Bit 12    | Bit 11  | Bit 10 | Bit 9 | Bit 8 |
|------------|--------|--------|--------|-----------|---------|--------|-------|-------|
| Definition |        |        |        |           |         |        |       |       |
| Low byte   | Bit 7  | Bit 6  | Bit 5  | Bit 4     | Bit 3   | Bit 2  | Bit 1 | Bit 0 |
| Definition |        |        |        | CHG_FIRST | GRID_EN | CHG_EN |       |       |

## Low byte:

## Bit 2 CHG\_EN: Charger Mode enabling

0 = Charger Mode DISABLED

1 = Charger Mode ENABLED

#### GRID\_EN: 50549 Mode enabling Bit 3

0 = 50549 Mode DISABLED

1 = 50549 Mode ENABLED

#### CHG\_FIRST: Charger first or not in 50549 + Charger Mode Bit 4

0 = Grid first (Default)

1 = Charging first

NOTE: BIC Mode is enabled when both CHG EN and GRID EN bits are logic 0.

#### ⊚INV\_STATUS(0x011D):

|           | Bit 7     | Bit 6       | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit1 | Bit 0 |
|-----------|-----------|-------------|-------|-------|--------|--------|------|-------|
| High byte |           |             |       |       |        |        |      |       |
| Low byte  | Bat_H_ALM | Bat_Low_ALM |       |       | CHG_ON | UTI_OK |      |       |

## Low byte:

#### UTI\_OK: Utility Power Exist Bit 2

0 = Utility power failure

1 = Utility Power normal

#### CHG\_ON: Charger status Bit 3

0 = Charger OFF

1 = Charger ON

#### Bit 6 Bat\_Low\_ALM: Battery low alarm

0 = Batter y low alarm is NOT triggered

1 = Battery low alarm is triggered

#### Bit 7 BAT\_H\_ALM: Battery high alarm

0 = Batter y low alarm is NOT triggered

1 = Battery low alarm is triggered

#### $\bigcirc$ GRID\_ALARM(0x0205):

| Byte 1     | Bit 7   | Bit 6    | Bit 5 | Bit 4  | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|------------|---------|----------|-------|--------|----------|----------|----------|----------|
| Definition |         |          |       |        |          |          |          |          |
| Byte 1     | Bit 7   | Bit 6    | Bit 5 | Bit 4  | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
| Definition |         |          |       |        |          |          |          |          |
| Byte 1     | Bit 7   | Bit 6    | Bit 5 | Bit 4  | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
| Definition |         | COMM_ERR | EEPER | HW_ERR | FAN_LOCK | UTP      | ОТР      | HV_OVP   |
| Byte 0     | Bit 7   | Bit 6    | Bit 5 | Bit 4  | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
| Definition | BAT_UVP | BAT_OVP  |       | ROCOF  | GRID_UFP | GRID_OFP | GRID_UVP | GRID_OVP |

#### Byte 0

#### Bit 0 GRID\_OVP: Overvoltage protection in grid-connected mode

0 = AC voltage normal

1 = AC over-voltage protected

## Bit 1 GRID\_UVP: Undervoltage protection in grid-connected mode

0 = AC voltage normal

1 = AC under-voltage protected

## $Bit \, 2 \qquad GRID\_OFP: Overfrequency \, protection \, in \, grid\text{-}connected \, mode$

0 = AC frequency normal

1 = AC over-frequency protected

#### Bit 3 GRID\_UFP: Underfrequency protection in grid-connected mode

0 = AC frequency normal

1 = AC under-frequency protected

## Bit 4 ROCOF: ROCOF protection in grid-connected mode

0 = ROCOF normal

1 = ROCOF abnormal protected

## Bit 6 BAT\_OVP: Battery overvoltage protection

0 = battery voltage normal

1 = Battery overvoltage protected

#### Bit 7 BAT\_UVP : Battery undervoltage protection

0 = battery voltage normal

1 = Battery undervoltage protected

#### Byte 1

## Bit 0 HV\_OVP: HV over voltage protection

0 = HV voltage normal

1 = HV over voltage protected

## Bit 1 OTP: Over temperature protection

0 = Internal temperature normal

1 = Internal temperature too high

### Bit 2 UTP: Under temperature protection

0 = Internal temperature normal

1 = Internal temperature too low

### Bit 3 FAN\_LOCK : Fan locked flag

0 = Fan working normally

1 = Fan locked

#### Bit 4 HW ERROR : Hardware error

0 = hardware normal

1 = hardware abnormal protected

#### Bit 5 EEPER: EEPROM data access error

0 = EEPROM data access normal

1 = EEPROM data access error

#### Bit 6 COMM ERR: Internal commumcaiton access error

0 = Internal commumcaiton access normal

1 = Internal commumcaiton access error

#### ⊚SAFTY\_FUNC\_CONFIG(0x02E4):

| High byte  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1    | Bit 0      |
|------------|-------|-------|-------|-------|-------|-------|----------|------------|
| Definition |       |       |       |       |       |       | ANTI_ISL | NS_PROTECT |
| Low byte   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1    | Bit 0      |
| Definition |       | ROCOF | LFSMU | LFSMO |       |       | OVRT     | UVRT       |

Low byte:

Bit 0 UVRT: UVRT enabling

0 = disabled

1 = enabled

Bit 1 OVRT : OVRT enabling

0 = disabled

1 = enabled

Bit 4 LFSMO: LFSM-O enabling

0 = disabled

1 = enabled

Bit 5 LFSMU: LFSM-U enabling

0 = disabled

1 = enabled

Bit 6 RPCPF: ROCOF protection enabling

0 = disabled

1 = enabled

High byte:

Bit 0 NS\_PROTECT : NS protection enabling

0 = disabled

1 = enabled

Bit 1 ANTI\_ISL: Active anti-islanding enabling (SFS)

0 = disabled

1 = enabled

#### ⊚THROT\_SRC(0x0268):

| Byte 3     | Bit 7 | Bit 6   | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------------|-------|---------|--------|-------|-------|-------|-------|-------|
| Definition |       |         |        |       |       |       |       |       |
| Byte 1     | Bit 7 | Bit 6   | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Definition |       |         |        |       |       |       |       |       |
| Byte 1     | Bit 7 | Bit 6   | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Definition |       | PF_P    | PF_SET | Q_P   | Q_U   | Q_SET | P_U   | P_SET |
| Byte 0     | Bit 7 | Bit 6   | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Definition |       | DERATED | LFSMU  | LFSMO |       |       | UVRT  | OVRT  |

Byte 0

Bit 0 UVRT: UVRT enabling

0 = disabled

1 = enabled

Bit 1 UVRT: UVRT

0 = the output control is not limited by UVRT

1 = the output control is limited by UVRT

Bit 4 LFSMO: LFSM-O

0 = the output control is not limited by LFSM-O

1 = the output control is limited by LFSM-O

Bit 5 LFSMU: LFSM-U

0 = the output control is not limited by LFSM-U

1 = the output control is limited by LFSM-U

Bit 6 DERATED: DERATED

0 = the output control is not limited by DERATED

1 = the output control is limited by DERATED

Byte 1

Bit 0 P\_SET: Maximum active power output setting

0 = the output control is not limited by P\_SET

1 = the output control is limited by P\_SET

#### Bit 1 P\_U: P(U) Curve

0 =the output control is not limited by P(U)

1 = the output control is limited by P(U)

### Bit 2 Q\_SET: Maximum reactive

0 = the output control is not limited by Q\_SET

1 = the output control is limited by Q\_SET

#### Bit 3 Q\_U: Q(U) curve

0 =the output control is not limited by Q(U)

1 =the output control is limited by Q(U)

#### Bit 4 Q\_P: Q(P) curve

0 =the output control is not limited by Q(P)

1 =the output control is limited by Q(P)

## Bit 5 PF\_SET: cosφ set point

0 = the output control is not limited by PF\_SET

1 = the output control is limited by PF\_SET

## Bit 6 PF\_P: $cos\phi(P)$ curve

0 = the output control is not limited by PF\_P

1 = the output control is limited by PF\_P

#### $\bigcirc$ CTRL\_MODE(0x02E8):

| High byte  | Bit 7       | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0            |
|------------|-------------|-------|-------|-------|-------|-------|-------|------------------|
| Definition |             |       |       |       |       |       |       | CTRL_STORAGE_CFG |
| Low byte   | Bit 7       | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0            |
| Definition | Q_CTRL_MODE |       |       |       |       |       | PU_EN |                  |

## Low byte:

Bit 0 PU\_EN : P(U) enabling

0 = disabled

1 = enabled

#### Bit 4-7 Q\_CTRL\_MODE : Reactive power control mode setting

0000 = reactive power control mode dialbed

0001 = Q setpint mode

0010 = Q(U) mode

 $0011 = Q(P) \mod e$ 

 $0100 = \cos \varphi \text{ setpint}$ 

 $0101 = Cos \varphi(P) \mod e$ 

## High byte:

## Bit 0 CTRL\_STORAGE\_CFG : EEPROM stogarge configriaton for GRID\_TIE\_REMOTE / P\_SET / Q\_SET / PF\_SET

0 = Do not store command parameters

1 = Store command parameters

(GRID\_TIE\_REMOTE / P\_SET / Q\_SET / PF\_SET) into the EEPROM

#### 6.2.6 Modbus Communication Examples

The following provides examples of request and response for each function code of the Modbus RTU.

#### 6.2.6.1 Function code

## 6.2.6.1.1 Read Holding Registers (FC = 03)

The request message specifies the starting register and quantity of registers to be read. For example: the master requests the content of analog output holding registers 0x008C-0 008E (MFR\_REVISION\_B0B5) from slave 0

#### Request:

| 0xC0 | 0x03 | 0x008C | 0x0003 | 0xD4F1 |
|------|------|--------|--------|--------|

0xC0: Slave ID 0

0x03: Function code 3 (Read Analog Output Holding R Registers)

0x008C: The Data Address of the first register requested

0x0003: The total number of registers requested ( Read 3 registers from 0x008C to 0x008E)

0xD4F1: CRC16 Error Check. Please be aware that CRC sending the Lo byte first

#### Response:

| 0xC0 | 0x03 | 0x06 | 0x0A0A0AFFFFFF | 0xD613 |
|------|------|------|----------------|--------|
|------|------|------|----------------|--------|

0xC0: Slave ID 0

0x03: Function code 3 (Read Analog Output Holding R Registers)

0x06: The number of data bytes to follow (6 bytes).

 $0x0A0A0AFFFFFF, meaning that the firmware version of the MCU <math display="inline">\,$ 

number 1~number 3 is R01.0

0xAD38: CRC16 Error Check. Please be aware that CRC sending the Lo byte first.

## 6.2.6.1.2 Read Input Register (FC=04)

The request message specifies the starting register and quantity of registers to be read. For example: The master requests the content of analog input register 0x0056 (READ\_FREQ) from salve 0.

## Request:

| 0xC0 0x04 | 0x0056 | 0x0001 | 0xC10B |
|-----------|--------|--------|--------|
|-----------|--------|--------|--------|

0xC0: Slave ID 0

0x04: Function code 4 (Read Analog Input Register)

0x0056: The Data Address of the first register requested

0x0001: The total number of registers requested (read only 1 registers from 0x0056)

0xC10B: CRC16 Error Check. Please be aware that CRC sending the Lo byte first.

#### Response:

| •    |      |    |        |        |
|------|------|----|--------|--------|
| 0xC0 | 0x04 | 02 | 0x1770 | 0x8AF5 |

0xC0: Slave ID 0

0x04: Function code 4 (Read Analog Input Register)

0x02: The number of data bytes to follow (2 bytes)

0x1770: The contents of register : 0x0056 (READ\_FREQ). 0x 1770 = 6000

= 60.00Hz

0x8AF5: CRC16 Error Check. Please be aware that CRC sending the Lo byte first.

#### 6.2.6.1.3 Write Single Register (FC=06)

The request message specifies the register reference to be written. For example: The master writes 40V to analog output holding register of 0x00B9 (BAT\_ALM\_VOLT) for salve 0  $^{\circ}$ 

#### Request:

| 0xC0 | 0x06 | 0x00B9 | 0x0FA0 | 0x4D76 |
|------|------|--------|--------|--------|
|------|------|--------|--------|--------|

0xC0: Slave ID 0

0x06: Function code 6 (Preset Single Register)

0x00B9: The Data Address of the register

0x0FA0: The value to write.  $0x0FA0 \rightarrow 4000 = 40V$ 

0x4D76: CRC16 Error Check. Please be aware that CRC sending the Lo byte first

#### Response:

The normal response is an echo of the query, returned after the register contents have been written.

## 6.2.6.2 POUT\_USER\_CMD(0x0150) Settgins for User

To avoid improper output power configurations in 50549 Mode, the POUT\_USER\_CMD (0x0150) register requires a different setup process. It must be unlocked via the SETTING\_UNLOCK (0x00CF) command prior to modification.

| C0 06 00 CF 4D 57 DD 8A | Unlock password is 0x4D57(MW) |
|-------------------------|-------------------------------|
| C0 06 01 50 88 13 BF 3B | Set POUT_USER_CMD             |

# 6.2.6.3 Password Seting for the Grid Connection Parameters for DSO According to the EN 50549 standard, grid-connection parameters are accessible only to the DSO and must be managed under an authorization control mechanism. Registers ranging from 0x0202 (AC\_TYPE) to 0x065A (ROCOF\_WINDOW\_TIME) can only be configured after the device is unlocked.

The default password is "000000" (string) or the unlocked state. When the password remains at its default value, all grid-connection parameters can be modified freely without entering the password. The current lock status can be read from SET\_PWD\_KEY (0x0823)

| Read value from SET_PWD_KEY(0x0823) | Status                                                     |
|-------------------------------------|------------------------------------------------------------|
| 0x0000                              | Unlocked or no password                                    |
| 0x00FE                              | Locked or incorrect password                               |
| 0x0055                              | Non-default password.<br>A password for unlock is required |

#### Password Unlock Procedure

The following example illustrates how to unlock the device when the password is set to 765432 (string).

1 Enter the password to ENTER PWD B0 (0x0820)

| C0 | 06 | 08 20 | 37 36 | 0C 97 |  |
|----|----|-------|-------|-------|--|
|----|----|-------|-------|-------|--|

2 Enter the password to ENTER\_PWD\_B2 (0x0821)

| C0 | 06 | 08 20 | 35 34 | 8C 36 |
|----|----|-------|-------|-------|
|----|----|-------|-------|-------|

③ Enter the password to ENTER\_PWD\_B4 (0x0822)

|    |    |       |       | •     | ′ |
|----|----|-------|-------|-------|---|
| C0 | 06 | 08 20 | 33 32 | 0F 94 | 7 |

4 Read the SET\_PWD\_KEY (0x0823) status

| C0 | 06 | 08 23 | 00 01 | 67 71 |
|----|----|-------|-------|-------|
|    |    |       |       |       |

If the response returns 0x0000, it indicates that the password has been successfully entered, and the grid connection parameters can now be modified

| C0 06 | 02 | 00 00 | 85 95 |
|-------|----|-------|-------|
|-------|----|-------|-------|

⑤ Lock the device manually (or wait 5 minutes for automatic locking)

| C0 | 06 | 08 23 | 00 55 | AA8E |
|----|----|-------|-------|------|

NOTE: When the BIC-5K is in the unlocked state, receiving any new grid-connection parameter change will reset the 5-minute auto-lock timer. In other words, the device will automatically lock 5 minutes after the most recent parameter change.

## • Password Change Procedure

To change the password, follow the procedure below. Before performing a password change, ensure that the device is in the unlocked state — that is, SET\_PWD\_KEY (0x0823) returns a value of 0x0000. The password can only be changed in this state.

① Enable password change mode. Write 0x00AA to SET\_PWD\_KEY (0x0823) to activate the password change procedure.

| C0 | 06 | 08 23 | 00 AA | EACE |
|----|----|-------|-------|------|
|    |    |       |       |      |

② During this procedure, sequentially enter the new password into the following registers, ENTER\_PWD\_B0 (0x0820), ENTER\_PWD\_B2 (0x0821) and ENTER\_PWD\_B4 (0x0822). For example the new password is 765432(string).

6

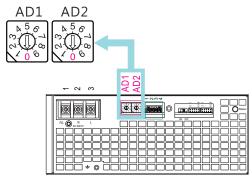
| C0 | 06 | 08 20 | 37 36 | 0C 97 |
|----|----|-------|-------|-------|
| C0 | 06 | 08 20 | 35 34 | 8C 36 |
| C0 | 06 | 08 20 | 33 32 | 0F 94 |

③ Input the password again

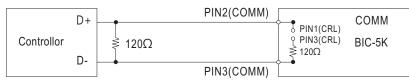
| C0 | 06 | 08 20 | 37 36 | 0C 97 |
|----|----|-------|-------|-------|
| C0 | 06 | 08 20 | 35 34 | 8C 36 |
| C0 | 06 | 08 20 | 33 32 | 0F 94 |

(4) Verify password change result. Read SET\_PWD\_KEY (0x0823) to confirm whether the password has been successfully updated

| C0 03 | 08 23 | 00 01 | 6771 |
|-------|-------|-------|------|
|-------|-------|-------|------|


If the response returns 0x00FF, it indicates that the password change was successful.

| C0 03 02 00 FF | C5D5 |
|----------------|------|
|----------------|------|


### 6.2.7 Modbus Practical Operation

The following steps will describe how to configure the BIC-5K-48 in communication mode and set the voltage/current parameters as follows: VOUT\_SET: 60 V, IOUT\_SET: 70 A and IOUT\_SET\_REV: -70 A

1.Set the address of the inverter to "0"



2.Connect the D+/D- pins of the master to the corresponding D+(PIN2) and D-(PIN3)pins of the COMM connector on the inverter. It is recommended to establish a common ground for the communication system to increases its communication reliability by using GND-AUX (PIN1) of COMM



3. Configure communication settings after power on

| 0xC0 | 0x06 | 0x00C4 | 0x0003 | 0x9817 |
|------|------|--------|--------|--------|

0xC0: Slave ID0

0x06: Function code 6 (Write Single Register)

0x00C2: SYSTEM\_CONFIG register

 $0x0003: Set\ to\ communication\ mode.\ Please\ refer\ to\ definition\ of\ SYSTEM\_CONFIG$ 

for detailed information

0x78E6: CRC16Error Check 4. Set VOUT SET to 60V

| 0xC0 | 0x06 | 0x0020 | 0x1770 | 0x2B47 |
|------|------|--------|--------|--------|

0xC0: Slave ID0

0x06 : Function code 6(Write Single Register)

 $0x0020: VOUT\_SETregister$   $0x1770: 60V \rightarrow 6000 \rightarrow 0x1770$ 0x2B47: CRC16 Error Check

NOTE: Conversion factor for VOUT\_SET is  $0.01 \cdot \text{so} = \frac{60\text{V}}{\text{F}=0.01} = 6000 \circ$ 

#### 5. Set IOUT\_SET to 70A

| 0xC0 | 0x06 | 0x0030 | 0x1B58 | 0x921E |
|------|------|--------|--------|--------|
|------|------|--------|--------|--------|

0xC0: Slave ID0

0x06: Function code 6(Write Single) Register

 $0x0030:IOUT\_SETregister$   $0x1B58:70A \rightarrow 7000 \rightarrow 0x1B58$ 0x921E:CRC16ErrorCheck

NOTE: Conversion factor for IOUT\_SET is  $0.01 \cdot \text{so} \frac{70\text{V}}{\text{F}=0.01} = 7000$ 

#### 6. Set IOUT\_SET\_REV to 70A

| 0xC0 | 0x06 | 0x0142 | 0x1B58 | 0x33F9 |
|------|------|--------|--------|--------|
|------|------|--------|--------|--------|

0xC0: Slave ID0

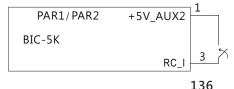
0x06: Function code 6(Write Single) 0x0142:IOUT\_SET\_REVregister 0x1B58:70A 7000 0x1B58

0x33F9: CRC16 Error Check

NOTE: Conversion factor for OUT\_SET\_REC is  $0.01 \cdot \text{so} \frac{70\text{V}}{\text{F}=0.01} = 7000$ 

7. Before connecting to the batteries or loads, it is recommended to review all of the settings and parameters using the appropriate commands. In the event that they do not meet your requirements, you may rewrite them as needed

EX: Read IOUT\_SET to check whether current level for AC to DC was set to a proper level.


#### Read IOUT\_SET

#### The unit returns data below

| 0xC0 | 0x03 | 0x0001 | 0x1B58 | 0x0FD1 |
|------|------|--------|--------|--------|
|      |      |        |        |        |

Parameters:  $0x1B58 \rightarrow 7000 \rightarrow 7000x0.01(F) \rightarrow 70A$ 

8. Finally, short circuit Remote ON\_OFF (PIN3) and +5V\_AUX2 (PIN1) pins of the PAR1/ PAR2 connector on the device to remote on it to charge the batteries or provide energy to the loads



## 6.3 Value Range and Tolerance

(1)Display parameters

| Мо     | dBus Command            | Model | Display value range | Tolerance |
|--------|-------------------------|-------|---------------------|-----------|
| 0x0050 | READ_VIN                | ALL   | 0~305Vac            | ±2.3Vac   |
| 0x0053 | READ_IIN                | ALL   | 0~25A               | ±1.0A     |
| 0x0056 | READ_FREQ               | ALL   | 0~70Hz              | ±0.05Hz   |
|        |                         | 24    | 0~35V               | ±0.24V    |
| 0x0060 | READ_VOUT               | 48    | 0~70V               | ±0.48V    |
| 0.0000 | NEAD_VOOT               | 96    | 0~120V              | ±0.96V    |
|        |                         | 380   | 0~450V              | ±3.8V     |
|        |                         | 24    | -280~250A           | ±2.1A     |
| 0x0061 | READ_IOUT               | 48    | -138~125A           | ±1.1A     |
| 0,0001 | KEAD_1001               | 96    | -70~65A             | ±0.6A     |
|        |                         | 380   | -20~18A             | ±0.15A    |
| 0x0062 | READ_TEMPERATURE_1      | ALL   | -40~110°C           | ±°℃       |
| 0x0070 | READ_FAN_SPEED_1        | ALL   | 0~13000RPM          | ±1000RPM  |
| 0x0071 | READ_FAN_SPEED_2        | ALL   | 0~13000RPM          | ±1000RPM  |
| 0x00C0 | SCALING_FACTOR          | ALL   | 0x000576767655      |           |
|        |                         | 24    | 0~35V               | ±0.24V    |
| 0x011A | READ_VBAT               | 48    | 0~70V               | ±0.48V    |
| OXOTIA | NEAD_VBAT               | 96    | 0~120V              | ±0.96V    |
|        |                         | 380   | 0~450V              | ±3.8V     |
|        |                         | 24    | -280~250A           | ±2.1A     |
| 0v011D | DEAD CHC CHDD           | 48    | -138~125A           | ±1.1A     |
| 0x011B | READ_CHG_CURR<br>Note i | 96    | -70~65A             | ±0.6A     |
|        |                         | 380   | -20~18A             | ±0.15A    |
| 0x011C | BAT_CAPACITY            | ALL   | 25/50/75/100%       | ±25%      |
| 0x011F | READ_BP_WATT_HI         | ALL   | -10000~             | ±100W     |
| 0x0120 | READ_BP_WATT_LO         | ALL   | 10000W              |           |

| ModBus Command |                  | Model | Display value range | Tolerance |
|----------------|------------------|-------|---------------------|-----------|
| 0x0125         | READ_BP_VA_HI    | ALL   | 0~10000VA           | ±100VA    |
| 0x0126         | READ_BP_VA_LO    | ALL   | 0.100004            | 110074    |
| 0x0202         | AC_TYPE          | ALL   | 0: Single-phase     |           |
|                |                  |       | 0: Standby          |           |
|                |                  |       | 1: BIC              |           |
| 0x0203         | INIV/ CTATE      | ALL   | 2: Charge           |           |
| 000203         | INV_STATE        | ALL   | 3: Grid-tie         |           |
|                |                  |       | 4: Shutdown         |           |
|                |                  |       | 5: Fault            |           |
| 0.0204         | CONNECT CTATE    | A     | 0: Disconnected     |           |
| 0x0204         | CONNECT_STATE    | ALL   | 1: Connected        |           |
| 0x020B         | W                | ALL   | 0~10000W            | ±100W     |
| 0x020C         | VA               | ALL   | 0~10000VA           | ±100VA    |
| 0x020D         | VAR              | ALL   | 0~3000VAR           | ±100VAR   |
| 0x020E         | PF               | ALL   | -1~+1               | ±0.01     |
| 0x020F         | А                | ALL   | 0~25A               | ±0.3A     |
| 0x0210         | LLV              | ALL   | 0~305Vac            | ±2.3Vac   |
| 0x0211         | LNV              | ALL   | 0~305Vac            | ±2.3Vac   |
| 0x0212         | HZ               | ALL   | 0~70Hz              | ±0.05Hz   |
| 0x029D         | W_MAX_RTG        | ALL   | 5000W               |           |
| 0x029E         | W_OVR_EXT_RTG    | ALL   | 4500W               |           |
| 0x029F         | W_OVR_EXT_RTG_PF | ALL   | 0.9                 |           |
| 0x02A0         | W_UND_EXT_RTG    | ALL   | 4500W               |           |
| 0x02A1         | W_UND_EXT_RTG_PF | ALL   | 0.9                 |           |
| 0x02A2         | VA_MAX_RTG       | ALL   | 5000VA              |           |
| 0x02A3         | VAR_MAX_INJ_RTG  | ALL   | 2180VAR             |           |
| 0x02A4         | VAR_MAX_ABS_RTG  | ALL   | 2180VAR             |           |
| 0x02A7         | V_NOR_RTG        | ALL   | 230Vac              |           |
| 0x02A8         | V_MAX_RTG        | ALL   | 253Vac              |           |

| ModBus Command |           |     | Display value range | Tolerance |
|----------------|-----------|-----|---------------------|-----------|
| 0x02A9         | V_MIN_RTG | ALL | 195.5Vac            |           |
| 0x02AA         | A_MAX_RTG | ALL | 25.6A               |           |

## (2)Control parameters

| Мо     | odBus Command | Model | Display value range | Tolerance | Default                             |
|--------|---------------|-------|---------------------|-----------|-------------------------------------|
| 0x0000 | OPERATION     | ALL   | 00h(OFF)/01h(ON)    | N/A       | 01h(ON)                             |
|        |               | 24V   | 19~33A              | ±0.24A    | 24V(CV Mode)<br>25.2V(Battery Mode) |
| 0.0000 | VOLIT CET     | 48V   | 38~66A              | ±0.48A    | 48V(CV Mode)<br>50.4V(Battery Mode) |
| 0x0020 | VOUT_SET      | 96V   | 76~112A             | ±0.96A    | 96V(CV Mode)<br>96V(Battery Mode)   |
|        |               | 380V  | 280~430A            | ±3.8A     | 380V(CV Mode)<br>400V(Battery Mode) |
|        | IOUT_SET      | 24V   | +4.16 ~ +228.8A     | ±2.1A     | 228.8A                              |
| 0x0030 |               | 48V   | +2.08 ~ +114.4A     | ±1.1A     | 114.4A                              |
| 0,0000 |               | 96V   | +1.04 ~ +57.2A      | ±0.6A     | 57.2A                               |
|        |               | 380V  | +0.3 ~ +16.5A       | ±0.15A    | 16.5A                               |
|        | CURVE_CC      | 24V   | 34.2~171A           | ±2.1A     | 171A                                |
| 0x00B0 |               | 48V   | 17.1~85.5A          | ±1.1A     | 85.5A                               |
| ОХООВО |               | 96V   | 8.9~44.5A           | ±0.6A     | 44.5A                               |
|        |               | 380V  | 2.5~12.5A           | ±0.15A    | 12.5A                               |
|        | CURVE_CV      | 24V   | 20~33A              | ±0.24A    | 28.8V                               |
| 0x00B1 |               | 48V   | 40~66A              | ±0.48A    | 57.6V                               |
| OXOODI | CORVE_CV      | 96V   | 80~112A             | ±0.96A    | 112V                                |
|        |               | 380V  | 290~430A            | ±3.8A     | 400V                                |
|        |               | 24V   | 20V~CURVE_CV        | ±0.24A    | 27.6V                               |
| 0x00B2 | CURVE_FV      | 48V   | 40V~CURVE_CV        | ±0.48A    | 55.2V                               |
| UXUUDZ | CORVE_FV      | 96V   | 80V~ CURVE_CV       | ±0.96A    | 108.8V                              |
|        |               | 380V  | 290~ CURVE_CV       | ±3.8A     | 385V                                |

| ModBus Command           |                     | Model | Display value range            | Tolerance   | Default     |
|--------------------------|---------------------|-------|--------------------------------|-------------|-------------|
|                          |                     | 24V   | 3.42~51.3A                     | ±2.1A       | 17.1A       |
| 0x00B3                   | CLIDVE TC           | 48V   | 1.71~25.65A                    | ±1.1A       | 8.55A       |
| OXUUDS                   | CURVE_TC            | 96V   | 0.89~13.35A                    | ±0.6A       | 4.45A       |
|                          |                     | 380V  | 0.25~3.75A                     | ±0.15A      | 1.25A       |
| 0x00B4                   | CURVE_CONFIG        | ALL   | N/A                            | N/A         | 0400h       |
| 0x00B5                   | CURVE_CC_TIMEOUT    |       |                                |             | 600 :       |
| 0x00B6                   | CURVE_CV_TIMEOUT    | ALL   | 1 ~ 64800 minute               | 30sec~5 min | 600 minute  |
| 0x00B7                   | CURVE_FV_TIMEOUT    |       |                                |             | 10 minute   |
|                          |                     | 24V   | 18.8V~25V                      | ±0.24V      | 22V         |
| 0x00B9                   | BAT_ALM_VOLT        | 48V   | 37.6V~50V                      | ±0.48V      | 44V         |
| OXOOBS                   |                     | 96V   | 75.2V~100V                     | ±0.96V      | 88V         |
|                          |                     | 380V  | 275V~335V                      | ±3.8V       | 300V        |
|                          | BAT_SHDN_VOLT       | 24V   | 18.4V~24V                      | ±0.24V      | 19V         |
| 0x00BA                   |                     | 48V   | 36.8V~48V                      | ±0.48V      | 38V         |
| UXUUBA                   |                     | 96V   | 73.6V~96V                      | ±0.96V      | 76V         |
|                          |                     | 380V  | 270V~320V                      | ±3.8V       | 280V        |
|                          |                     | 24V   | 18.4V ~CURVE_FV                | ±0.24V      | 18.4V       |
| 0x00BB                   | BAT_RCHG_VOLT       | 48V   | 36.8V~CURVE_FV                 | ±0.48V      | 36.8V       |
| ОХООВВ                   |                     | 96V   | 73.6V~CURVE_FV                 | ±0.96V      | 73.6V       |
|                          |                     | 380V  | 270V~ CURVE_FV                 | ±3.8V       | 270V        |
|                          |                     | 24V   | 30V~33V                        | ±0.24V      | 31V         |
| 0x00BC                   | BAT_OV_ALM_VOLT     | 48V   | 60V~66V                        | ±0.48V      | 62V         |
| UXUUBC                   | BAT_OV_ALIVI_VOLT   | 96V   | 100V~114V                      | ±0.96V      | 114V        |
|                          |                     | 380V  | 400V~430V                      | ±3.8V       | 420V        |
| CAN:0x00C2<br>MOD:0x00C4 | SYSTEM_CONFIG       | ALL   | N/A                            | N/A         | 0002h       |
| 0x0100                   | INV_OPERATION       | ALL   | N/A                            | N/A         | 0000h       |
| 0x0140                   | DIR_CTRL<br>Note ii | ALL   | 00h(Charge)/<br>01h(Discharge) | N/A         | 00h(Charge) |

| ModBus Command              |                            | Model     | Display value range     | Tolerance | Default            |
|-----------------------------|----------------------------|-----------|-------------------------|-----------|--------------------|
|                             | 0x0141 VOUT_SET_REV -      |           | 19~33V                  | ±0.24V    | 19V                |
| 0,,0141                     |                            |           | 38~66V                  | ±0.48V    | 38V                |
| UXU141                      |                            |           | 76~112V                 | ±0.96V    | 76V                |
|                             |                            | 380V      | 280~430V                | ±3.8V     | 280V               |
|                             |                            | 24V       | -232 ~ -4.16A           | ±2.1A     | -232A              |
| 0x0142                      | IOUT_SET_REV               | 48V       | -118 ~ -2.08A           | ±1.1A     | -114A              |
| 0x0142                      | 1001_311_KLV               | 96V       | -57 ~ -1.04A            | ±0.6A     | -57A               |
|                             |                            | 380V      | -16~-0.3A               | ±0.15A    | -16A               |
| 0x0143                      | BIDIR_CONFIG               | ALL       | 00h(CV)/01h(Battery)    | N/A       | 00h(CV)            |
| 0x0150                      | P_OUT_SET                  | ALL       | -5000W~5000W            | ±2%Sn     | 0W                 |
| 0x02D1                      | GRID_TIE_REMOTE            | ALL       | 00h(dis)/01h(Connected) | N/A       | 01h(Connected)     |
| 0x02D2                      | CONNECT_UPPER_VOLT         | ALL       | 100~120%                | ±1%F.S    | 110%Un             |
| 0x02D3                      | CONNECT_LOWER_VOLT         | ALL       | 50~100%                 | ±1%F.S    | 85%Un              |
| 0x02D4                      | CONNECT UPPER FREQ         | ALL       | 50~55/                  | ±0.05Hz   | 50.1Hz             |
| 0,0204                      | 0x02D4 CONNECT_OFFER_TREQ  |           | 60~65Hz                 | 10.03112  | 30.1112            |
| 0x02D5   CONNECT_LOWER_FREQ | ALL                        | 45~50/    | ±0.05Hz                 | 47.5Hz    |                    |
| 0,0203                      | (02D3   CONNECT_LOWER_FREQ |           |                         |           | 55~60Hz            |
| 0x02D6                      | CONNECT_DLY_TIME           | ALL       | 10~600sec               | N/A       | 60sec              |
| 0x02D7                      | 0x02D7 CONNECT_P_RATE      |           | 6~3000% or              | N/A       | 65535(no limit)    |
| 0,0207                      | CONNECT_T_NATE             | ALL       | > 3000%(no limit)       | 11/74     | 03333(110 1111111) |
| 0x02D8                      | RECONNECT_P_RATE           | ALL       | 6~3000%                 | N/A       | 10% Pn/min         |
| 0x02E4                      | SAFTY_FUNC_CONFIG          | ALL       | N/A                     | N/A       | 0x0333h            |
|                             |                            |           |                         |           |                    |
| 0x02E5                      | COUNTRY_SET                | ALL       | N/A                     | N/A       | 00h: EN50549       |
|                             |                            |           |                         |           |                    |
|                             |                            |           | 01h(220V)/              |           |                    |
| 0x02E6                      | GRID_VOLT_SET              | ALL       | 02h(230V)/              | N/A       | 02h(230V)          |
|                             |                            |           | 03h(240V)               |           |                    |
| 0x02E7                      | GRID_FREQ_SET              | ALL       | 00h(50Hz)/              | N/A       | 00h(50Hz)          |
|                             | 3/4D_1/1EQ_321             | , , , , , | 01h(60Hz)               | IV/ A     | 33(332)            |

| ModBus Command |                | Model     | Display value range    | Tolerance | Default           |
|----------------|----------------|-----------|------------------------|-----------|-------------------|
| 0.0250         | CTDL MODE      | CTRL MODE |                        | NI /A     | 0040h(Fixed Pset/ |
| 0x02E8         | CTRL_MODE      | ALL       | N/A                    | N/A       | Fixed PFset)      |
| 0x02E9         | P_SET_RATE     | ALL       | 6~3000%Pn/min          | N/A       | 30%Pn/min         |
| 0x02EA         | P_TAU          | ALL       | 3~60                   | N/A       | 3(Time constant)  |
| 0x02EB         | Q_TAU          | ALL       | 3~60                   | N/A       | 3(Time constant)  |
| 0x02EC         | P_SET          | ALL       | 0~100%                 | ±2%Sn     | 100%Pn            |
| 0x02ED         | Q_SET          | ALL       | -100~100%              | ±2%Sn     | 0%Qn              |
| 00255          | DE CET         | ALL       | 0.9~1 (over)/          | ±2%Sn     | 1 (DE)            |
| 0x02EE         | PF_SET         | ALL       | 0.9~1(under)           | ±2/0311   | 1 (PF)            |
| 0x02EF         | PF_P_LOCKIN_V  | ALL       | 0~120%                 | N/A       | 0%Un              |
| 0x02F0         | PF_P_LOCKOUT_V | ALL       | 0~120%                 | N/A       | 0%Un              |
| 0,,0251        | DE D CUDVE DE1 | ALL       | 0.9~1 (over)/          | . 20/ 5   | 0.9 (over) (PF)   |
| 0x02F1         | PF_P_CURVE_PF1 | ALL       | 0.9~1(under)           | ±2%Sn     |                   |
| 0x02F2         | PF_P_CURVE_P1  | ALL       | 0~100%                 | ±2%Sn     | 15%Pn             |
| 0x02F3         | 00252          | ALL       | 0.9~1 (over)/          | ±2%Sn     | 1 (PF)            |
| UXU2F3         | PF_P_CURVE_PF2 | ALL       | 0.9~1(under)           | ±2/0311   | 1 (PT)            |
| 0x02F4         | PF_P_CURVE_P2  | ALL       | 0~100%                 | ±2%Sn     | 20%Pn             |
| 0x02F5         | PF_P_CURVE_PF3 | ALL       | 0.9~1 (over)/          | ±2%Sn     | 1 (PF)            |
| UXUZF3         | 11_1_CORVE_113 | ALL       | 0.9~1(under)           | ±2%Sn     |                   |
| 0x02F6         | PF_P_CURVE_P3  | ALL       | 0~100%                 | ±2%Sn     | 80%Pn             |
| 0x02F7         | PF P CURVE PF4 | ALL       | 0.9~1 (over)/          | ±2%Sn     | 0.9 (under) (PF)  |
| UXUZF7         | 11_1_CORVL_114 | ALL       | 0.9~1(under)           | 12/0311   | 0.5 (under) (11)  |
| 0x02F8         | PF_P_CURVE_P4  | ALL       | 0~100%                 | ±2%Sn     | 90%Pn             |
| 0x0327         | Q_P_CURVE_Q1   | ALL       | -100(under)~100(over)% | ±2%Sn     | 100%Qn            |
| 0x0328         | Q_P_CURVE_P1   | ALL       | 0~100%                 | ±2%Sn     | 15%Pn             |
| 0x0329         | Q_P_CURVE_Q2   | ALL       | -100(under)~100(over)% | ±2%Sn     | 0%Qn              |
| 0x032A         | Q_P_CURVE_P2   | ALL       | 0~100%                 | ±2%Sn     | 20%Pn             |
| 0x032B         | Q_P_CURVE_Q3   | ALL       | -100(under)~100(over)% | ±2%Sn     | 0%Qn              |
| 0x032C         | Q_P_CURVE_P3   | ALL       | 0~100%                 | ±2%Sn     | 80%Pn             |
| 0x032D         | Q_P_CURVE_Q4   | ALL       | -100(under)~100(over)% | ±2%Sn     | -100%Qn           |

| ModBus Command |               | Model | Display value range | Tolerance | Default         |
|----------------|---------------|-------|---------------------|-----------|-----------------|
| 0x032E         | Q_P_CURVE_P4  | ALL   | 0~100%              | ±2%Sn     | 90%Pn           |
| 0x035D         | Q_V_MIN_COS   | ALL   | 0~1                 |           | 0(PF) (disable) |
| 0x035E         | Q_V_LOCKIN_P  | ALL   | 0~20%               | ±2%Sn     | 0% (disable)    |
| 0x035F         | Q_V_LOCKOUT_P | ALL   | 0~20%               | ±2%Sn     | 0% (disable)    |
| 0x0360         | Q_V_CURVE_Q1  | ALL   | -100~100%           | ±2%Sn     | 100%Qn          |
| 0x0361         | Q_V_CURVE_V1  | ALL   | 85~120%             | ±1%Un     | 93%Un           |
| 0x0362         | Q_V_CURVE_Q2  | ALL   | -100~100%           | ±2%Sn     | 0%Qn            |
| 0x0363         | Q_V_CURVE_V2  | ALL   | 85~120%             | ±1%Un     | 94%Un           |
| 0x0364         | Q_V_CURVE_Q3  | ALL   | -100~100%           | ±2%Sn     | 0%Qn            |
| 0x0365         | Q_V_CURVE_V3  | ALL   | 85~120%             | ±1%Un     | 106%Un          |
| 0x0366         | Q_V_CURVE_Q4  | ALL   | -100~100%           | ±2%Sn     | -100%Qn         |
| 0x0367         | Q_V_CURVE_V4  | ALL   | 85~120%             | ±1%Un     | 108%Un          |
| 0x3A0          | P_V_CURVE_P1  | ALL   | 0~100%              | ±2%Sn     | 100%Pn          |
| 0x3A1          | P_V_CURVE_V1  | ALL   | 85~120%             | ±1%Un     | 110%Un          |
| 0x3A2          | P_V_CURVE_P2  | ALL   | 0~100%              | ±2%Sn     | 100%Pn          |
| 0x3A3          | P_V_CURVE_V2  | ALL   | 85~120%             | ±1%Un     | 110%Un          |
| 0x3A4          | P_V_CURVE_P3  | ALL   | 0~100%              | ±2%Sn     | 0%Pn            |
| 0x3A5          | P_V_CURVE_V3  | ALL   | 85~120%             | ±1%Un     | 115%Un          |
| 0x3A6          | P_V_CURVE_P4  | ALL   | 0~100%              | ±2%Sn     | 0%Pn            |
| 0x3A7          | P_V_CURVE_V4  | ALL   | 85~120%             | ±1%Un     | 115%Un          |
| 0x03D9         | UVRT_VOLT1    | ALL   | 0~100%              | ±1%Un     | 5%              |
| 0x03DA         | UVRT_TIME1    | ALL   | 0~100sec            |           | 0sec            |
| 0x03DB         | UVRT_VOLT2    | ALL   | 0~100%              | ±1%Un     | 5%              |
| 0x03DC         | UVRT_TIME2    | ALL   | 0~100sec            |           | 0.25sec         |
| 0x03DD         | UVRT_VOLT3    | ALL   | 0~100%              | ±1%Un     | 85%             |
| 0x03DE         | UVRT_TIME3    | ALL   | 0~100sec            |           | 3sec            |
| 0x03DF         | UVRT_VOLT4    | ALL   | 0~100%              | ±1%Un     | 85%             |
| 0x03E0         | UVRT_TIME4    | ALL   | 0~100sec            |           | 3sec            |
| 0x03E1         | UVRT_VOLT5    | ALL   | 0~100%              | ±1%Un     | 85%             |
| 0x03E2         | UVRT_TIME5    | ALL   | 0~100sec            |           | 3sec            |

| ModBus Command Model |                          | Display value range | Tolerance               | Default   |             |
|----------------------|--------------------------|---------------------|-------------------------|-----------|-------------|
| 0x03E3               | UVRT_VOLT6               | ALL                 | 0~100%                  | ±1%Un     | 85%         |
| 0x03E4               | UVRT_TIME6               | ALL                 | 0~100sec                |           | 3sec        |
| 0x03E5               | UVRT_VOLT7               | ALL                 | 0~100%                  | ±1%Un     | 85%         |
| 0x03E6               | UVRT_TIME7               | ALL                 | 0~100sec                |           | 3sec        |
| 0x0468               | OVRT_VOLT1               | ALL                 | 100~130%                | ±1%Un     | 125%        |
| 0x0469               | OVRT_TIME1               | ALL                 | 0~100sec                |           | 0sec        |
| 0x046A               | OVRT_VOLT2               | ALL                 | 100~130%                | ±1%Un     | 125%        |
| 0x046B               | OVRT_TIME2               | ALL                 | 0~100sec                |           | 0.1sec      |
| 0x046C               | OVRT_VOLT3               | ALL                 | 100~130%                | ±1%Un     | 120%        |
| 0x046D               | OVRT_TIME3               | ALL                 | 0~100sec                |           | 0.1sec      |
| 0x046E               | OVRT_VOLT4               | ALL                 | 100~130%                | ±1%Un     | 120%        |
| 0x046F               | OVRT_TIME4               | ALL                 | 0~100sec                |           | 5sec        |
| 0x0470               | OVRT_VOLT5               | ALL                 | 100~130%                | ±1%Un     | 115%        |
| 0x0471               | OVRT_TIME5               | ALL                 | 0~100sec                |           | 5sec        |
| 0x0472               | OVRT_VOLT6               | ALL                 | 100~130%                | ±1%Un     | 115%        |
| 0x0473               | OVRT_TIME6               | ALL                 | 0~100sec                |           | 60sec       |
| 0x0474               | OVRT_VOLT7               | ALL                 | 100~130%                | ±1%Un     | 110%        |
| 0x0475               | OVRT_TIME7               | ALL                 | 0~100sec                |           | 60sec       |
| 0x0609               | LFSMO_FREQ_START         | ALL                 | 50.2~55/                | . 0 0511- | 50.2Hz      |
| 0x0009               | LF3MO_FREQ_3TART         | ALL                 | 60.2~65Hz               | ±0.05Hz   | 30.202      |
|                      |                          |                     | 50~LFSMO_FREQ_START/    |           |             |
| 0x060A               | LFSMO_FREQ_STOP          | ALL                 | 60~LFSMO_FREQ_START Hz/ | ±0.05Hz   | 0 (disable) |
|                      |                          |                     | 0 (disable)             |           |             |
| 0x060B               | LFSMO_STOP_DLY           | ALL                 | 0~600sec                |           | 0sec        |
| 0x060C               | LFSMO_DROOP_RATE         | ALL                 | 2~12%                   |           | 5%          |
| 0x060D               | LFSMO_ACTIVE_DLY         | ALL                 | 0~2sec                  |           | 0sec        |
| 0x060E               | OUDCOF LECAMILEDED CTART |                     | 45~49.8/                | +0.0511-  | 49.8Hz      |
| UXUOUE               | LFSMU_FREQ_START         | ALL 55~             | 55~59.8Hz               | ±0.05Hz   | 43.0NZ      |

| ModBus Command Model Display value range Tolerance Defaul |                  |        |                         |           | Default     |
|-----------------------------------------------------------|------------------|--------|-------------------------|-----------|-------------|
| IVIC                                                      | Wodbus Command   |        |                         | Toterance | Delault     |
|                                                           |                  |        | LFSMU_FREQ_START~50/    |           |             |
| 0x060F                                                    | LFSMU_FREQ_STOP  | ALL    | LFSMU_FREQ_START~60 Hz/ | ±0.05Hz   | 0 (disable) |
|                                                           |                  |        | 0 (disable)             |           |             |
| 0x0610                                                    | LFSMU_STOP_DLY   | ALL    | 0~600sec                |           | 30sec       |
| 0x0611                                                    | LFSMU_DROOP_RATE | ALL    | 2~12%                   |           | 2%          |
| 0x0612                                                    | LFSMU_ACTIVE_DLY | ALL    | 0~2sec                  |           | 0sec        |
|                                                           |                  |        | 0: PREF = Pn            |           | •           |
| 0x0613                                                    | LFSM_P_REF       | ALL    | 1:PREF = PM             |           | 0           |
| 0x0640                                                    | UVP1_VOLT        | ALL    | 20~100%                 | ±1%Un     | 80%Un       |
| 0x0641                                                    | UVP1_TIME        | ALL    | 0.1~100sec              |           | 3sec        |
| 0x0642                                                    | UVP2_VOLT        | ALL    | 20~100%                 | ±1%Un     | 45%Un       |
| 0x0643                                                    | UVP2_TIME        | ALL    | 0.1~5sec                |           | 0.3sec      |
| 0x0644                                                    | UVP3_VOLT        | ALL    | 20~100%                 | ±1%Un     | 45%Un       |
| 0x0645                                                    | UVP3_TIME        | ALL    | 0.1~5sec                |           | 0.3sec      |
| 0x0646                                                    | OVP1_VOLT        | ALL    | 100~130%                | ±1%Un     | 110% Un     |
| 0x0647                                                    | OVP1_TIME        | ALL    | 0.1~100sec              |           | 0.1sec      |
| 0x0648                                                    | OVP2_VOLT        | ALL    | 100~130%                | ±1%Un     | 125%Un      |
| 0x0649                                                    | OVP2_TIME        | ALL    | 0.1~5sec                |           | 0.1sec      |
| 0x064A                                                    | OVP3_VOLT        | ALL    | 100~130%                | ±1%Un     | 125%Un      |
| 0x064B                                                    | OVP3_TIME        | ALL    | 0.1~5sec                |           | 0.1sec      |
| 0.0646                                                    | LIEDA EDEO       |        | 45~50/                  | 0.0511    | 47.511      |
| 0x064C                                                    | UFP1_FREQ        | ALL    | 55~60Hz                 | ±0.05Hz   | 47.5Hz      |
| 0x064D                                                    | UFP1_TIME        | ALL    | 0.1~100sec              |           | 0.1sec      |
| 0.0645                                                    | A 1 1            | 45~50/ | . 0.0511                | 47.511    |             |
| 0x064E                                                    | UFP2_FREQ        | ALL    | 55~60Hz                 | ±0.05Hz   | 47.5Hz      |
| 0x064F                                                    | UFP2_TIME        | ALL    | 0.1~5sec                |           | 0.1sec      |
| 0,0000                                                    | LIEDS EDEO       | ALL    | 45~50/                  | . 0 0511  | 47 511-     |
| 0x0650                                                    | UFP3_FREQ        |        | 55~60Hz                 | ±0.05Hz   | 47.5Hz      |
|                                                           |                  |        |                         |           |             |

| ModBus Command |                   | Model | Display value range | Tolerance | Default |
|----------------|-------------------|-------|---------------------|-----------|---------|
| 0x0651         | UFP3_TIME         | ALL   | 0.1~5sec            |           | 0.1sec  |
| 0x0652         | OFP1_FREQ         | ALL   | 50~55/<br>60~65Hz   | ±0.05Hz   | 51.5Hz  |
| 0x0653         | OFP1_TIME         | ALL   | 0.1~100sec          |           | 0.1sec  |
| 0x0654         | OFP2_FREQ         | ALL   | 50~55/<br>60~65Hz   | ±0.05Hz   | 51.5Hz  |
| 0x0655         | OFP2_TIME         | ALL   | 0.1~5sec            |           | 0.1sec  |
| 0x0656         | OFP3_FREQ         | ALL   | 50~55/<br>60~65Hz   | ±0.05Hz   | 51.5Hz  |
| 0x0657         | OFP3_TIME         | ALL   | 0.1~5sec            |           | 0.1sec  |
| 0x0658         | OVP10MIN_VOLT     | ALL   | 100~115%            | ±1%Un     | 110%Un  |
| 0x0659         | ROCOF_SLOPE       | ALL   | 1~10Hz/sec          |           | 2Hz/sec |
| 0x065A         | ROCOF_WINDOW_TIME | ALL   | 0.1~1sec            | ±1%Un     | 0.5sec  |

# NOTE: i.READ\_CHG\_CURR will display ZERO amp when output current is less than values in the table below.

| Model | Minimum readable |
|-------|------------------|
| 24V   | 2.1A±2.1A        |
| 48V   | 1.1A±1.1A        |
| 96V   | 0.6A±0.6A        |
| 380V  | 0.15A±0.15A      |

- ii.BIDIRECTIONAL CONFIG = 00h → for Bi-directional Auto-detection Mode.
- X DC voltage can be configured only through VOUT\_SET. SVR is not supported.
- X Default IOUT\_SET and IOUT\_SET\_REV are at their maximum values.
- ※ C/D control I/O is disabled
- Mode. VOUT\_SET/IOUT\_SET/REVERSE\_VOUT\_SET/ REVERSE\_IOUT\_SET can be used to set charge voltage/current and discharge voltage/current
- $\label{thm:control} \mbox{$\times$ The C/D control is enabled, allowing direction control via external I/O.}$
- \*\* DIRECTION\_CTRL is available and can be used to set the operating direction (A/D or D/A).
- iii. Owing to the limited write cycles of the EEPROM, it is advisable to consider using the SYSTEM\_CONFIG (CAN:0x00C2; MOD:0x00C4) command to select an appropriate EEPROM writing logic, especially if communication settings are frequently altered.
- iv.The tolerance of CURVE\_CC\_TIMEOUT, CURVE\_CV\_TIMEOUT, and CURVE\_FV\_TIMEOUT increase over time. The maximum timing tolerance is +5 minutes

## 7. Protections and Trouble Shooting

#### 7.1 Protections

7.1.1 Over Temperature Protection (OTP) and Alarm
Built-in thermal detection circuit, once the internal temperature
exceeds the threshold value, the supply will shut down
automatically (the fans will still be running to cool down the supply).
Please switch off the supply, remove all possible causes and then
leave the supply cooling down to a normal working temperature
(approximate 10 minutes - 1 hour) before repower on again.
Maximum output current 4mA.



| T-ALARM to GND-AUX2 | Condition      |
|---------------------|----------------|
| -0.5~0.5V           | Normal Temp.   |
| 4.5~5.5V            | Abnormal temp. |

#### 7.1.2 AC Fail Protection

When AC voltage/frequency is abnormal, BIC-5K will enter protection mode to prevent damaging itself or affect quality of the grid no matter which conversion it is, D/A or A/D. The supply will restore automatically when AC voltage/frequency back to normal.

## 7.2 Trouble Shooting

In the event of a fault, the indicator lights on. The device will display fault signals to assist in troubleshooting. Faults can be identified by the number of flashes of the red LED. It is recommended to follow the table below for inspection and troubleshooting. If the issue cannot be resolved, please contact a nearby Mean Well authorized distributor or the manufacturer for assistance.

| Fault signal                            | Possible cause                                 | Suggestions for Fault correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ₩ Л<br>Red LED flashes                  | Over load protection                           | Check if the load requires high startup current, such as inductive or capacitance loads. After the fault condition is remover, repower the inverter for operation.                                                                                                                                                                                                                                                                                                                                                                                                 |
| one time                                | Short circuit protection                       | Check if the loads exceed the rated value or if the circuit is shorted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Red LED flashes twice                   | Overvotlage protection                         | Check if the battery or DC bidirectional converter voltage is too high. After resolving the issue, restart the device to recover normal operation.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Red LED flashes three times             | Over/under Temperature<br>Protection (OTP/UTP) | OTP:Check if the cooling vents are unobstructed. If the ambient temperature is too high, reduce the load or lower the environmental temperature. UTP: Check if the ambient temperature is too low, after the fault is cleared, the device can restart automatically.                                                                                                                                                                                                                                                                                               |
| Red LED flashes four times              | Fan Fault Protection<br>(Fan-lock)             | Check if the fan is blocked by dust or debris. After clearing the fault, power cycle the device to resume normal operation.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| * MMM_<br>Red LED flashes<br>five times | Other Conditions                               | The BIC-5K continuously records the current operating status. When AC power is off but DC energy is still present, the device maintains operation to complete status logging. The LED will flash red five times and remain in AC Fail state. When AC power is restored or reconnected, the BIC-5K will resume normal operation. Additionally, if the actual AC voltage or frequency differs from the configured values, this protection may be triggered. In this case, adjust the settings to the correct values, and the BIC-5K will return to normal operation. |

## 8. Warranty

This product provides five years warranty under normal usage. Do not replace parts or any form of modification to the product in order to keep the warranty effectively.

MEAN WELL possesses the right to adjust the content of this manual.
 Please refer to the latest version of our manual on our website.
 https://www.meanwell.com



## 9. Environmental declaration information

https://www.meanwell.com//Upload/PDF/RoHS\_PFOS.pdf https://www.meanwell.com//Upload/PDF/REACH\_SVHC.pdf https://www.meanwell.com//Upload/PDF/Declaration\_RoHS-E.pdf

#### 明緯企業股份有限公司 MEAN WELL ENTERPRISES CO., LTD.

248 新 北 市 五 股 區 五 權 三 路 28 號 No.28, Wuquan 3rd Rd., Wugu Dist., New Taipei City 248, Taiwan Tel: 886-2-2299-6100 Fax: 886-2-2299-6200 http://www.meanwell.com E-mail:info@meanwell.com